Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique

被引:2
|
作者
Robins, Lawrence H. [1 ]
Brubaker, Matt D. [2 ]
Tung, Ryan C. [3 ]
Killgore, Jason P. [1 ]
机构
[1] NIST, Appl Chem & Mat Div, Boulder, CO 80309 USA
[2] NIST, Div Appl Phys, Boulder, CO USA
[3] Univ Nevada Reno, Dept Mech Engn, Reno, NV USA
关键词
atomic force microscopy; contact resonance force microscopy; piezoresponse force microscopy; piezoelectric thin film; electromechanical properties; CALIBRATION;
D O I
10.1088/2399-1984/ab844f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with approximate to 180 degrees phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [31] Dual resonance excitation system for the contact mode of atomic force microscopy
    Kopycinska-Mueller, M.
    Striegler, A.
    Schlegel, R.
    Kuzeyeva, N.
    Koehler, B.
    Wolter, K. -J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04):
  • [32] A comparative study of contact resonance imaging using atomic force microscopy
    Banerjee, S
    Gayathri, N
    Dash, S
    Tyagi, AK
    Raj, B
    APPLIED PHYSICS LETTERS, 2005, 86 (21) : 1 - 3
  • [33] Contact Resonance Atomic Force Microscopy Using Long, Massive Tips
    Jaquez-Moreno, Tony
    Aureli, Matteo
    Tung, Ryan C.
    SENSORS, 2019, 19 (22)
  • [34] Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation
    Campbell, Sara E.
    Ferguson, Virginia L.
    Hurley, Donna C.
    ACTA BIOMATERIALIA, 2012, 8 (12) : 4389 - 4396
  • [35] CONTACT STIFFNESS CALIBRATION PLATFORM FOR NANOMECHANICAL PROPERTY MEASUREMENTS WITH CONTACT RESONANCE ATOMIC FORCE MICROSCOPY
    Rosenberger, M. R.
    Chen, S.
    Prater, C. B.
    King, W. P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1235 - 1238
  • [36] Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy
    Jakob, A. M.
    Buchwald, J.
    Rauschenbach, B.
    Mayr, S. G.
    NANOSCALE, 2014, 6 (12) : 6898 - 6910
  • [37] Measurement of Viscoelastic Loss Tangent with Contact Resonance Modes of Atomic Force Microscopy
    Hurley, Donna C.
    Campbell, Sara E.
    Killgore, Jason P.
    Cox, Lewis M.
    Ding, Yifu
    MACROMOLECULES, 2013, 46 (23) : 9396 - 9402
  • [38] Measurement of Poisson's ratio with contact-resonance atomic force microscopy
    Hurley, D. C.
    Turner, J. A.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
  • [39] Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy
    Wagner, Ryan
    Moon, Robert J.
    Raman, Arvind
    CELLULOSE, 2016, 23 (02) : 1031 - 1041
  • [40] Multifunctional cantilevers for simultaneous enhancement of contact resonance and harmonic atomic force microscopy
    Wang, Wenting
    Zhang, Kaidi
    Zhang, Wenhao
    Hou, Yaoping
    Chen, Yuhang
    NANOTECHNOLOGY, 2021, 32 (29)