Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [41] Absent Multiple Kernel Learning Algorithms
    Liu, Xinwang
    Wang, Lei
    Zhu, Xinzhong
    Li, Miaomiao
    Zhu, En
    Liu, Tongliang
    Liu, Li
    Dou, Yong
    Yin, Jianping
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1303 - 1316
  • [42] Neural Generalization of Multiple Kernel Learning
    Ghanizadeh, Ahmad Navid
    Ghiasi-Shirazi, Kamaledin
    Monsefi, Reza
    Qaraei, Mohammadreza
    NEURAL PROCESSING LETTERS, 2024, 56 (01)
  • [43] Multiple Kernel Learning Improved by MMD
    Ren, Jiangtao
    Liang, Zhou
    Hu, Shaofeng
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2010), PT II, 2010, 6441 : 63 - 74
  • [44] Deep multilayer multiple kernel learning
    Ilyes Rebai
    Yassine BenAyed
    Walid Mahdi
    Neural Computing and Applications, 2016, 27 : 2305 - 2314
  • [45] Beta Process Multiple Kernel Learning
    Ni, Bingbing
    Li, Teng
    Moulin, Pierre
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 963 - 970
  • [46] Soft Margin Multiple Kernel Learning
    Xu, Xinxing
    Tsang, Ivor W.
    Xu, Dong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (05) : 749 - 761
  • [47] Multiple Graph-Kernel Learning
    Aiolli, Fabio
    Donini, Michele
    Navarin, Nicolo
    Sperduti, Alessandro
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 1607 - 1614
  • [48] Kernel Matrix-Based Heuristic Multiple Kernel Learning
    Price, Stanton R.
    Anderson, Derek T.
    Havens, Timothy C.
    Price, Steven R.
    MATHEMATICS, 2022, 10 (12)
  • [49] Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
    Speicher, Nora K.
    Pfeifer, Nico
    BIOINFORMATICS, 2015, 31 (12) : 268 - 275
  • [50] Multitask Learning Using Regularized Multiple Kernel Learning
    Gonen, Mehmet
    Kandemir, Melih
    Kaski, Samuel
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 500 - 509