Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [31] Learning multiple tasks with kernel methods
    Evgeniou, T
    Micchelli, CA
    Pontil, M
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 615 - 637
  • [32] A primal method for multiple kernel learning
    Hao, Zhifeng
    Yuan, Ganzhao
    Yang, Xiaowei
    Chen, Zijie
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4): : 975 - 987
  • [33] Multiple kernel extreme learning machine
    Liu, Xinwang
    Wang, Lei
    Huang, Guang-Bin
    Zhang, Jian
    Yin, Jianping
    NEUROCOMPUTING, 2015, 149 : 253 - 264
  • [34] Large scale multiple kernel learning
    Sonnenburg, Sören
    Rätsch, Gunnar
    Schäfer, Christin
    Schölkopf, Bernhard
    Journal of Machine Learning Research, 2006, 7 : 1531 - 1565
  • [35] Deep multilayer multiple kernel learning
    Rebai, Ilyes
    BenAyed, Yassine
    Mahdi, Walid
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (08): : 2305 - 2314
  • [36] Structural multiple empirical kernel learning
    Wang, Zhe
    Fan, Qi
    Ke, Sheng
    Gao, Daqi
    INFORMATION SCIENCES, 2015, 301 : 124 - 140
  • [37] Multiple Kernel Learning for Dimensionality Reduction
    Lin, Yen-Yu
    Liu, Tyng-Luh
    Fuh, Chiou-Shann
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (06) : 1147 - 1160
  • [38] Neural Generalization of Multiple Kernel Learning
    Ahmad Navid Ghanizadeh
    Kamaledin Ghiasi-Shirazi
    Reza Monsefi
    Mohammadreza Qaraei
    Neural Processing Letters, 56
  • [39] Multiple Universum Empirical Kernel Learning
    Wang, Zhe
    Hong, Sisi
    Yao, Lijuan
    Li, Dongdong
    Du, Wenli
    Zhang, Jing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 89
  • [40] Multiple Kernel Learning for speaker verification
    Longworth, C.
    Gales, M. J. F.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1581 - 1584