Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [1] Iterative Category Discovery via Multiple Kernel Metric Learning
    Galleguillos, Carolina
    McFee, Brian
    Lanckriet, Gert R. G.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 108 (1-2) : 115 - 132
  • [2] Iterative Category Discovery via Multiple Kernel Metric Learning
    Carolina Galleguillos
    Brian McFee
    Gert R. G. Lanckriet
    International Journal of Computer Vision, 2014, 108 : 115 - 132
  • [3] Drug Screening with Elastic-Net Multiple Kernel Learning
    Pasupa, Kitsuchart
    Hussain, Zakria
    Shawe-Taylor, John
    Willett, Peter
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [4] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [5] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [6] On Multiple Kernel Learning with Multiple Labels
    Tang, Lei
    Chen, Jianhui
    Ye, Jieping
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1255 - 1260
  • [7] Multiple kernel learning by empirical target kernel
    Wang, Peiyan
    Cai, Dongfeng
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (02)
  • [8] Multiple Instance Learning via Multiple Kernel Learning
    Yang, Bing
    Li, Qian
    Jing, Ling
    Zhen, Ling
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 160 - 167
  • [9] SPARSITY IN MULTIPLE KERNEL LEARNING
    Koltchinskii, Vladimir
    Yuan, Ming
    ANNALS OF STATISTICS, 2010, 38 (06): : 3660 - 3695
  • [10] Multiple Kernel Learning Algorithms
    Gonen, Mehmet
    Alpaydin, Ethem
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2211 - 2268