Combining Multiple Features for Product Categorisation by Multiple Kernel Learning

被引:1
|
作者
Chavaltada, Chanawee [1 ]
Pasupa, Kitsuchart [1 ]
Hardoon, David R. [2 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Fac Informat Technol, Bangkok 10520, Thailand
[2] PriceTrolley Pte Ltd, Singapore 573969, Singapore
关键词
Product classification; Multiple kernel learning; Feature combination;
D O I
10.1007/978-3-319-93692-5_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
E-commerce provides convenience and flexibility for consumers; for example, they can inquire about the availability of a desired product and get immediate response, hence they can seamlessly search for any desired products. Every day, e-commerce sites are updated with thousands of new images and their associated metadata (textual information), causing a problem of big data. Retail product categorisation involves cross-modal retrieval that shows the path of a category. In this study, we leveraged both image vectors of various aspects and textual metadata as features, then constructed a set of kernels. Multiple Kernel Learning (MKL) proposes to combine these kernels in order to achieve the best prediction accuracy. We compared the Support Vector Machine (SVM) prediction results between using an individual feature kernel and an MKL combined feature kernel to demonstrate the prediction improvement gained by MKL.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [41] A primal method for multiple kernel learning
    Zhifeng Hao
    Ganzhao Yuan
    Xiaowei Yang
    Zijie Chen
    Neural Computing and Applications, 2013, 23 : 975 - 987
  • [42] Multiple Kernel Learning for Drug Discovery
    Pilkington, Nicholas C. V.
    Trotter, Matthew W. B.
    Holden, Sean B.
    MOLECULAR INFORMATICS, 2012, 31 (3-4) : 313 - 322
  • [43] Deep multilayer multiple kernel learning
    Rebai, Ilyes
    BenAyed, Yassine
    Mahdi, Walid
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (08): : 2305 - 2314
  • [44] Structural multiple empirical kernel learning
    Wang, Zhe
    Fan, Qi
    Ke, Sheng
    Gao, Daqi
    INFORMATION SCIENCES, 2015, 301 : 124 - 140
  • [45] Multiple Kernel Learning for Dimensionality Reduction
    Lin, Yen-Yu
    Liu, Tyng-Luh
    Fuh, Chiou-Shann
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (06) : 1147 - 1160
  • [46] Neural Generalization of Multiple Kernel Learning
    Ahmad Navid Ghanizadeh
    Kamaledin Ghiasi-Shirazi
    Reza Monsefi
    Mohammadreza Qaraei
    Neural Processing Letters, 56
  • [47] Multiple Universum Empirical Kernel Learning
    Wang, Zhe
    Hong, Sisi
    Yao, Lijuan
    Li, Dongdong
    Du, Wenli
    Zhang, Jing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 89
  • [48] Multiple Kernel Learning for speaker verification
    Longworth, C.
    Gales, M. J. F.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1581 - 1584
  • [49] Absent Multiple Kernel Learning Algorithms
    Liu, Xinwang
    Wang, Lei
    Zhu, Xinzhong
    Li, Miaomiao
    Zhu, En
    Liu, Tongliang
    Liu, Li
    Dou, Yong
    Yin, Jianping
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1303 - 1316
  • [50] Neural Generalization of Multiple Kernel Learning
    Ghanizadeh, Ahmad Navid
    Ghiasi-Shirazi, Kamaledin
    Monsefi, Reza
    Qaraei, Mohammadreza
    NEURAL PROCESSING LETTERS, 2024, 56 (01)