Robust multi-angle structured illumination lensless microscopy via illumination angle calibration

被引:8
|
作者
Guo, Yanxun [1 ,2 ]
Guo, Rongzhen [1 ,2 ]
Qi, Pan [3 ]
Zhou, You [4 ]
Zhang, Zibang [1 ,2 ]
Zheng, Guoan [5 ]
Zhong, Jingang [1 ,2 ]
机构
[1] Jinan Univ, Dept Optoelect Engn, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Guangdong Prov Key Lab Opt Fiber Sensing & Commun, Guangzhou 510632, Peoples R China
[3] Guangzhou Panyu Polytech, Coll Intelligent Mfg, Guangzhou 511483, Guangdong, Peoples R China
[4] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[5] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
基金
中国国家自然科学基金;
关键词
SINGLE-SHOT; PHASE RETRIEVAL; WIDE-FIELD;
D O I
10.1364/OL.454892
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multi-angle structured illumination lensless (MASIL) microscopy enables high-resolution image recovery over a large field of view. Successful image recovery of MASIL microscopy, however, relies on an accurate knowledge of the multi-angle illumination. System misalignments and slight deviations from the true illumination angle may result in image artifacts in reconstruction. Here we report a MASIL microscopy system that is robust against illumination misalignment. To calibrate the illumination angles, we design and use a double-sided mask, which is a glass wafer fabricated with a ring-array pattern on the upper surface and a disk-array pattern on the lower surface. As such, the illumination angles can be decoded from the captured images by estimating the relative displacement of the two patterns. We experimentally demonstrate that this system can achieve successful image recovery without any prior knowledge of the illumination angles. The reported approach provides a simple yet robust resolution for wide-field lensless microscopy. It can solve the LED array misalignment problem and calibrate angle-varied illumination for a variety of applications. (C) 2022 Optica Publishing Group
引用
收藏
页码:1847 / 1850
页数:4
相关论文
共 50 条
  • [21] Fast structured illumination microscopy via deep learning
    Ling, Chang
    Zhang, Chonglei
    Wang, Mingqun
    Meng, Fanfei
    Du, Luping
    Yuan, Xiaocong
    PHOTONICS RESEARCH, 2020, 8 (08) : 1350 - 1359
  • [22] Superresolution via structured illumination quantum correlation microscopy
    Classen, Anton
    von Zanthier, Joachim
    Scully, Marlan O.
    Agarwal, Girish S.
    OPTICA, 2017, 4 (06): : 580 - 587
  • [23] Experimental Demonstration of Multi Moire Structured Illumination Microscopy
    Shterman, Doron
    Gjonaj, Bergin
    Bartal, Guy
    ACS PHOTONICS, 2018, 5 (05): : 1898 - 1902
  • [24] Polarization calibration of airborne multi-angle polarimetric radiometer
    Song, M.-X. (smx0369@aiofm.ac.cn), 1600, Chinese Academy of Sciences (20):
  • [25] Structured illumination microscopy artefacts caused by illumination scattering
    Mo, Yanquan
    Feng, Fan
    Mao, Heng
    Fan, Junchao
    Chen, Liangyi
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2199):
  • [26] Adaptive illumination reduces photobleaching in structured illumination microscopy
    Chakrova, Nadya
    Canton, Alicia Soler
    Danelon, Christophe
    Stallinga, Sjoerd
    Rieger, Bernd
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (10): : 4263 - 4274
  • [27] Phase Estimation of Illumination Pattern in Structured Illumination Microscopy
    Pospisil, Jakub
    Fliegei, Karel
    Klima, Milos
    2017 27TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2017, : 174 - 177
  • [28] Fast illumination parameter estimation of structured illumination microscopy
    Qian, Jiaming
    Cao, Yu
    Bi, Ying
    Wu, Hongjun
    Liu, Yongtao
    Chen, Qian
    Zuo, Chao
    ADVANCED OPTICAL IMAGING TECHNOLOGIES V, 2023, 12316
  • [29] Challenges in Structured Illumination Microscopy
    Schneckenburger, H.
    Richter, V.
    Piper, M.
    Wagner, M.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 485 - 485
  • [30] Polarized structured illumination microscopy
    Strack, Rita
    NATURE METHODS, 2019, 16 (12) : 1206 - 1206