Rainbow arithmetic progressions and anti-Ramsey results

被引:28
|
作者
Jungic, V [1 ]
Licht, J
Mahdian, M
Nesetril, J
Radoicic, R
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] William H Hall High Sch, Hartford, CT 06117 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2003年 / 12卷 / 5-6期
关键词
D O I
10.1017/S096354830300587X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoicic conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distinct colours. In this paper, we prove that every 3-colouring of the set of natural numbers for which each colour class has density more than 1/6, contains a 3-term rainbow arithmetic progression. We also prove similar results for colourings; of Z(n). Finally, we give a general perspective on other anti-Ramsey-type problems that can be considered.
引用
收藏
页码:599 / 620
页数:22
相关论文
共 50 条
  • [21] On a generalized anti-Ramsey problem
    Axenovich, M
    Kündgen, A
    COMBINATORICA, 2001, 21 (03) : 335 - 349
  • [22] SPARSE ANTI-RAMSEY GRAPHS
    KOHAYAKAWA, Y
    LUCZAK, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 146 - 152
  • [23] ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES IN ALL GRAPHS
    Lu, Linyuan
    Meier, Andrew
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1162 - 1172
  • [24] Anti-Ramsey numbers of small graphs
    Bialostocki, Arie
    Gilboa, Shoni
    Roditty, Yehuda
    ARS COMBINATORIA, 2015, 123 : 41 - 53
  • [25] Anti-Ramsey numbers of subdivided graphs
    Jiang, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (02) : 361 - 366
  • [26] Bipartite anti-Ramsey numbers of cycles
    Axenovich, M
    Jiang, T
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 9 - 28
  • [27] SUB-RAMSEY NUMBERS FOR ARITHMETIC PROGRESSIONS
    ALON, N
    CARO, Y
    TUZA, Z
    GRAPHS AND COMBINATORICS, 1989, 5 (04) : 307 - 314
  • [29] Sub-Ramsey Numbers for Arithmetic Progressions
    Maria Axenovich
    Ryan Martin
    Graphs and Combinatorics, 2006, 22 : 297 - 309
  • [30] Anti-Ramsey number of matchings in hypergraphs
    Ozkahya, Lale
    Young, Michael
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2359 - 2364