Rainbow arithmetic progressions and anti-Ramsey results
被引:28
|
作者:
论文数: 引用数:
h-index:
机构:
Jungic, V
[1
]
Licht, J
论文数: 0引用数: 0
h-index: 0
机构:Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
Licht, J
Mahdian, M
论文数: 0引用数: 0
h-index: 0
机构:Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
Mahdian, M
Nesetril, J
论文数: 0引用数: 0
h-index: 0
机构:Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
Nesetril, J
Radoicic, R
论文数: 0引用数: 0
h-index: 0
机构:Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
Radoicic, R
机构:
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] William H Hall High Sch, Hartford, CT 06117 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
来源:
COMBINATORICS PROBABILITY & COMPUTING
|
2003年
/
12卷
/
5-6期
关键词:
D O I:
10.1017/S096354830300587X
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoicic conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distinct colours. In this paper, we prove that every 3-colouring of the set of natural numbers for which each colour class has density more than 1/6, contains a 3-term rainbow arithmetic progression. We also prove similar results for colourings; of Z(n). Finally, we give a general perspective on other anti-Ramsey-type problems that can be considered.
机构:Open Univ Israel, Dept Math, IL-43107 Raanana, Israel
Bialostocki, Arie
Gilboa, Shoni
论文数: 0引用数: 0
h-index: 0
机构:
Open Univ Israel, Dept Math, IL-43107 Raanana, IsraelOpen Univ Israel, Dept Math, IL-43107 Raanana, Israel
Gilboa, Shoni
Roditty, Yehuda
论文数: 0引用数: 0
h-index: 0
机构:
Acad Coll Tel Aviv Yaffo, Sch Comp Sci, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, IL-69978 Tel Aviv, IsraelOpen Univ Israel, Dept Math, IL-43107 Raanana, Israel