Quantum theory of phase estimation

被引:106
|
作者
Pezze, L.
Smerzi, A. [1 ]
机构
[1] INO CNR, QSTAR, Largo Enrico Fermi 6, Florence, Italy
来源
ATOM INTERFEROMETRY | 2014年 / 188卷
关键词
SQUEEZED STATES; BROGLIE WAVELENGTH; ATOMIC STATES; ENTANGLEMENT; PRECISION; INTERFEROMETRY; NOISE; LIMIT; INFORMATION; GENERATION;
D O I
10.3254/978-1-61499-488-0-691
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Advancements in physics are often motivated/accompanied by advancements in our precision measurements abilities. The current generation of atomic and optical interferometers is limited by shot noise, a fundamental limit when estimating a phase shift with classical light or uncorrelated atoms. In the last years, it has been clarified that the creation of special quantum correlations among particles, which will be called here "useful entanglement", can strongly enhance the interferometric sensitivity. Pioneer experiments have already demonstrated the basic principles. We are probably at the verge of a second quantum revolution where quantum mechanics of many-body systems is exploited to overcome the limitations of classical technologies. This review illustrates the deep connection between entanglement and sub shot noise sensitivity.
引用
收藏
页码:691 / 741
页数:51
相关论文
共 50 条
  • [41] A causal quantum theory in phase space
    Phys. and Theor. Chem. Laboratory, South Parks Road, Oxford OX1 3UB, United Kingdom
    不详
    Phys Lett Sect A Gen At Solid State Phys, 6 (303-314):
  • [42] Quantum field theory in phase space
    Amorim, R. G. G.
    Khanna, F. C.
    Malbouisson, A. P. C.
    Malbouisson, J. M. C.
    Santana, A. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (08):
  • [43] Geometric phase in relativistic quantum theory
    Wang, Zheng-Chuan
    Li, Bo-Zang
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 4313 - 4317
  • [44] A causal quantum theory in phase space
    dePolavieja, GG
    PHYSICS LETTERS A, 1996, 220 (06) : 303 - 314
  • [45] Geometric phase in relativistic quantum theory
    Wang, ZC
    Li, BZ
    PHYSICAL REVIEW A, 1999, 60 (06): : 4313 - 4317
  • [46] Encrypted quantum state tomography with phase estimation for quantum Internet
    Burhan Gulbahar
    Quantum Information Processing, 22
  • [47] Pragmatic Quantum-Classic Phase Estimation of a Quantum Channel
    Bristow, Austin
    Chen, Kwang-Cheng
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [48] Encrypted quantum state tomography with phase estimation for quantum Internet
    Gulbahar, Burhan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (07)
  • [49] Approximate Quantum Fourier Transform and Quantum Algorithm for Phase Estimation
    Prokopenya, Alexander N.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015), 2015, 9301 : 391 - 405
  • [50] An Improved Implementation Approach for Quantum Phase Estimation on Quantum Computers
    Mohammadbagherpoor, Hamed
    Oh, Young-Hyun
    Dreher, Patrick
    Singh, Anand
    Yu, Xianqing
    Rindos, Andy J.
    PROCEEDINGS OF THE 2019 FOURTH IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2019, : 54 - 62