Quantum theory of phase estimation

被引:106
|
作者
Pezze, L.
Smerzi, A. [1 ]
机构
[1] INO CNR, QSTAR, Largo Enrico Fermi 6, Florence, Italy
来源
ATOM INTERFEROMETRY | 2014年 / 188卷
关键词
SQUEEZED STATES; BROGLIE WAVELENGTH; ATOMIC STATES; ENTANGLEMENT; PRECISION; INTERFEROMETRY; NOISE; LIMIT; INFORMATION; GENERATION;
D O I
10.3254/978-1-61499-488-0-691
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Advancements in physics are often motivated/accompanied by advancements in our precision measurements abilities. The current generation of atomic and optical interferometers is limited by shot noise, a fundamental limit when estimating a phase shift with classical light or uncorrelated atoms. In the last years, it has been clarified that the creation of special quantum correlations among particles, which will be called here "useful entanglement", can strongly enhance the interferometric sensitivity. Pioneer experiments have already demonstrated the basic principles. We are probably at the verge of a second quantum revolution where quantum mechanics of many-body systems is exploited to overcome the limitations of classical technologies. This review illustrates the deep connection between entanglement and sub shot noise sensitivity.
引用
收藏
页码:691 / 741
页数:51
相关论文
共 50 条
  • [21] Quantum phase estimation with lossy interferometers
    Demkowicz-Dobrzanski, R.
    Dorner, U.
    Smith, B. J.
    Lundeen, J. S.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [22] Simulation of a quantum algorithm for phase estimation
    Prokopenya, A. N.
    PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (02) : 98 - 104
  • [23] Imperfect Distributed Quantum Phase Estimation
    Neumann, Niels M. P.
    van Houte, Roy
    Attema, Thomas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 605 - 615
  • [24] Quantum Enhanced Multiple Phase Estimation
    Humphreys, Peter C.
    Barbieri, Marco
    Datta, Animesh
    Walmsley, Ian A.
    PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [25] A differentiable quantum phase estimation algorithm
    Castaldo, Davide
    Jahangiri, Soran
    Migliore, Agostino
    Arrazola, Juan Miguel
    Corni, Stefano
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [26] OPTIMAL QUANTUM MEASUREMENTS FOR PHASE ESTIMATION
    SANDERS, BC
    MILBURN, GJ
    PHYSICAL REVIEW LETTERS, 1995, 75 (16) : 2944 - 2947
  • [27] On the general problem of quantum phase estimation
    D'Ariano, GM
    Macchiavello, C
    Sacchi, ME
    PHYSICS LETTERS A, 1998, 248 (2-4) : 103 - 108
  • [28] Optimal phase estimation in quantum networks
    Van Dam, Wim
    D'Ariano, G. Mauro
    Ekert, Artur
    Macchiavello, Chiara
    Mosca, Michele
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) : 7971 - 7984
  • [29] Optimal quantum measurements for phase estimation
    Phys Rev Lett, 16 (2944):
  • [30] Phase sensitivity of entanglement in the Quantum Phase Estimation algorithm
    Amouzou, Grace
    Atchonouglo, Kossi
    Holweck, Frederic
    PHYSICA SCRIPTA, 2024, 99 (09)