Quantum theory of phase estimation

被引:106
|
作者
Pezze, L.
Smerzi, A. [1 ]
机构
[1] INO CNR, QSTAR, Largo Enrico Fermi 6, Florence, Italy
来源
ATOM INTERFEROMETRY | 2014年 / 188卷
关键词
SQUEEZED STATES; BROGLIE WAVELENGTH; ATOMIC STATES; ENTANGLEMENT; PRECISION; INTERFEROMETRY; NOISE; LIMIT; INFORMATION; GENERATION;
D O I
10.3254/978-1-61499-488-0-691
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Advancements in physics are often motivated/accompanied by advancements in our precision measurements abilities. The current generation of atomic and optical interferometers is limited by shot noise, a fundamental limit when estimating a phase shift with classical light or uncorrelated atoms. In the last years, it has been clarified that the creation of special quantum correlations among particles, which will be called here "useful entanglement", can strongly enhance the interferometric sensitivity. Pioneer experiments have already demonstrated the basic principles. We are probably at the verge of a second quantum revolution where quantum mechanics of many-body systems is exploited to overcome the limitations of classical technologies. This review illustrates the deep connection between entanglement and sub shot noise sensitivity.
引用
收藏
页码:691 / 741
页数:51
相关论文
共 50 条
  • [1] UNBIASED QUANTUM PHASE ESTIMATION
    Lu, Xi
    Lin, Hongwei
    QUANTUM INFORMATION & COMPUTATION, 2023, 23 (1-2) : 16 - 26
  • [2] Phase estimation in quantum optics
    Rehácek, J
    Hradil, Z
    Dusek, M
    12TH CZECH-SLOVAK-POLISH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2001, 4356 : 96 - 101
  • [3] Optimal Quantum Phase Estimation
    Dorner, U.
    Demkowicz-Dobrzanski, R.
    Smith, B. J.
    Lundeen, J. S.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [4] UNBIASED QUANTUM PHASE ESTIMATION
    Lu X.
    Lin H.
    Quantum Information and Computation, 2023, 23 (1-2): : 16 - 26
  • [5] ESTIMATION OF COUNTED QUANTUM PHASE
    HRADIL, Z
    PHYSICAL REVIEW A, 1995, 51 (03): : 1870 - 1873
  • [6] Reductive quantum phase estimation
    Papadopoulos, Nicholas J. C.
    Reilly, Jarrod T.
    Wilson, John Drew
    Holland, Murray J.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [7] Quantum phase estimation and quantum counting with qudits
    Tonchev, Hristo S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [8] Multiparameter quantum estimation theory in quantum Gaussian states
    Bakmou, Lahcen
    Daoud, Mohammed
    Laamara, Rachid ahl
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [9] Coherency in view of quantum estimation theory
    Fujiwara, A
    Nagaoka, H
    QUANTUM COHERENCE AND DECOHERENCE: FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 1996, : 303 - 306
  • [10] Asymptotic Theory of Quantum Channel Estimation
    Zhou, Sisi
    Jiang, Liang
    PRX QUANTUM, 2021, 2 (01):