New Einstein-Randers metrics on some homogeneous manifolds

被引:0
|
作者
Tan, Ju [1 ]
Xu, Na [1 ]
机构
[1] Anhui Univ Technol, Sch Math & Phys Sci & Engn, Maanshan 243032, Peoples R China
关键词
Einstein-Randers metrics; flag manifolds; homogeneous manifolds;
D O I
10.1002/mana.201800075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we find several new non-Riemannian Einstein-Randes metrics on some homogeneous manifolds arising from the exceptional Lie groups. Based on the discussions about generalized flag manifolds with second Betti number b(2)(M) = 1, we firstly prove that there exists Riemannian Einstein metrics on these homogeneous manifolds. Then, we prove that there exists non-Riemannian Einstein-Randers metrics on these homogeneous manifolds.
引用
收藏
页码:2693 / 2708
页数:16
相关论文
共 50 条
  • [21] Left Invariant Einstein-Randers Metrics on Compact Lie Groups
    Wang, Hui
    Deng, Shaoqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 870 - 881
  • [22] Invariant randers metrics on homogeneous riemannian manifolds
    Deng, SQ
    Hou, ZX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15): : 4353 - 4360
  • [23] New homogeneous Einstein metrics on Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 2 - 18
  • [24] Rigidity of Weak Einstein-Randers Spaces
    Lajmiri, Behnaz
    Bidabad, Behroz
    Rafie-Rad, Mehdi
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 207 - 220
  • [25] Flag curvature of invariant Randers metrics on homogeneous manifolds
    Esrafilian, E.
    Moghaddam, H. R. Salimi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13): : 3319 - 3324
  • [26] New homogeneous Einstein metrics on quaternionic Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    ADVANCES IN GEOMETRY, 2018, 18 (04) : 509 - 524
  • [27] New Invariant Einstein-Randers Metrics on Stiefel Manifolds V2pRn = SO(n)/SO (n-2p)
    Chen, Huibin
    Chen, Chao
    Chen, Zhiqi
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [28] On Homogeneous Randers Metrics
    Sadighi, Akbar
    Toomanian, Megerdich
    Najafi, Behzad
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 217 - 225
  • [29] SOME HOMOGENEOUS EINSTEIN MANIFOLDS
    SAGLE, AA
    NAGOYA MATHEMATICAL JOURNAL, 1970, 39 : 81 - &
  • [30] Some new homogeneous Einstein metrics on symmetric spaces
    Kerr, MM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 153 - 171