Classification of Partial Discharge Signals Using 1D Convolutional Neural Networks

被引:2
|
作者
Mantach, Sara [1 ]
Janani, Hamed [2 ]
Ashraf, Ahmed [1 ]
Kordi, Behzad [1 ]
机构
[1] Univ Manitoba, Elect & Comp Engn, Winnipeg, MB, Canada
[2] Verint Syst, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CNN; deep learning; insulation systems; partial discharges; POWER-CABLES; PD-SOURCES; IDENTIFICATION;
D O I
10.1109/CCECE53047.2021.9569071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For decades, partial discharge (PD) measurement has been used as a common tool for assessing the insulation condition of high voltage (HV) systems. Background noise and interference resulting from the measurement environment and other power electronic devices in the setup make PD diagnosis challenging and more difficult. Signal processing tools employed for PD classification usually require a significant effort and expertise to extract semi-automated features from the time domain PD signals. The performance of a PD detection system depends heavily on the quality of these features. With the emergence of new technologies, wherein the interference pulses become more similar to PD pulses, automatic feature extraction has become a necessary prerequisite to have a reliable PD detection system. Therefore, the implementation of techniques based on deep neural networks that enable automated feature extraction and classification is needed. In this paper, a one dimensional convolutional neural network has been designed that takes a set of time series waveforms as the input and is capable of classifying PD sources in the presence of additive Gaussian noise and discrete spectral interference.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Prediction and modelling online reviews helpfulness using 1D Convolutional Neural Networks
    Olmedilla, Maria
    Rocio Martinez-Torres, M.
    Toral, Sergio
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [32] Fault detection and diagnosis in electric motors using 1d convolutional neural networks with multi-channel vibration signals
    Ribeiro Junior, Ronny Francis
    Areias, Isac Antonio dos Santos
    Campos, Mateus Mendes
    Teixeira, Carlos Eduardo
    Silva, Luiz Eduardo Borges da
    Gomes, Guilherme Ferreira
    MEASUREMENT, 2022, 190
  • [33] End-to-end environmental sound classification using a 1D convolutional neural network
    Abdoli, Sajjad
    Cardinal, Patrick
    Koerich, Alessandro Lameiras
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 136 : 252 - 263
  • [34] Speaker age and gender recognition using 1D and 2D convolutional neural networks
    Yucesoy, Erguen
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (06): : 3065 - 3075
  • [35] Efficient analysis of hydrological connectivity using 1D and 2D Convolutional Neural Networks
    Nguyen, Chi
    Tan, Chang Wei
    Daly, Edoardo
    Pauwels, Valentijn R. N.
    ADVANCES IN WATER RESOURCES, 2023, 182
  • [36] Speaker age and gender recognition using 1D and 2D convolutional neural networks
    Ergün Yücesoy
    Neural Computing and Applications, 2024, 36 : 3065 - 3075
  • [37] Computing Transiting Exoplanet Parameters with 1D Convolutional Neural Networks
    Iglesias Alvarez, Santiago
    Diez Alonso, Enrique
    Sanchez Rodriguez, Maria Luisa
    Rodriguez Rodriguez, Javier
    Perez Fernandez, Saul
    de Cos Juez, Francisco Javier
    AXIOMS, 2024, 13 (02)
  • [38] State-of-the-Art in 1D Convolutional Neural Networks: A Survey
    Olalekan Ige, Ayokunle
    Sibiya, Malusi
    IEEE ACCESS, 2024, 12 : 144082 - 144105
  • [39] Classification of ECG Signals Based on 1D Convolution Neural Network
    Li, Dan
    Zhang, Jianxin
    Zhang, Qiang
    Wei, Xiaopeng
    2017 IEEE 19TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2017,
  • [40] PARTIAL DISCHARGE PATTERN-CLASSIFICATION USING MULTILAYER NEURAL NETWORKS
    SATISH, L
    GURURAJ, BI
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1993, 140 (04): : 323 - 330