Classification of Partial Discharge Signals Using 1D Convolutional Neural Networks

被引:2
|
作者
Mantach, Sara [1 ]
Janani, Hamed [2 ]
Ashraf, Ahmed [1 ]
Kordi, Behzad [1 ]
机构
[1] Univ Manitoba, Elect & Comp Engn, Winnipeg, MB, Canada
[2] Verint Syst, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CNN; deep learning; insulation systems; partial discharges; POWER-CABLES; PD-SOURCES; IDENTIFICATION;
D O I
10.1109/CCECE53047.2021.9569071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For decades, partial discharge (PD) measurement has been used as a common tool for assessing the insulation condition of high voltage (HV) systems. Background noise and interference resulting from the measurement environment and other power electronic devices in the setup make PD diagnosis challenging and more difficult. Signal processing tools employed for PD classification usually require a significant effort and expertise to extract semi-automated features from the time domain PD signals. The performance of a PD detection system depends heavily on the quality of these features. With the emergence of new technologies, wherein the interference pulses become more similar to PD pulses, automatic feature extraction has become a necessary prerequisite to have a reliable PD detection system. Therefore, the implementation of techniques based on deep neural networks that enable automated feature extraction and classification is needed. In this paper, a one dimensional convolutional neural network has been designed that takes a set of time series waveforms as the input and is capable of classifying PD sources in the presence of additive Gaussian noise and discrete spectral interference.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Partial Discharge Detection with Convolutional Neural Networks
    Wang, Wei
    Yu, Nanpeng
    2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2020,
  • [22] Classification of Radar Signals with Convolutional Neural Networks
    Hong, Seok-Jun
    Yi, Yearn-Gui
    Jo, Jeil
    Seo, Bo-Seok
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 894 - 896
  • [23] 1D convolutional neural networks-based soil fertility classification and fertilizer prescription
    Sujatha, M.
    Jaidhar, C. D.
    Lingappa, Mallikarjuna
    ECOLOGICAL INFORMATICS, 2023, 78
  • [24] The Short-Term Prediction of Length of Day Using 1D Convolutional Neural Networks (1D CNN)
    Guessoum, Sonia
    Belda, Santiago
    Ferrandiz, Jose M.
    Modiri, Sadegh
    Raut, Shrishail
    Dhar, Sujata
    Heinkelmann, Robert
    Schuh, Harald
    SENSORS, 2022, 22 (23)
  • [25] Lipschitz constant estimation for 1D convolutional neural networks
    Pauli, Patricia
    Gramlich, Dennis
    Allgoewer, Frank
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [26] Partial discharge classification using neural networks and statistical parameters
    Chen, Hung-Cheng
    Chen, Po-Hung
    Wang, Meng-Hui
    6TH WSEAS INT CONF ON INSTRUMENTATION, MEASUREMENT, CIRCUITS & SYSTEMS/7TH WSEAS INT CONF ON ROBOTICS, CONTROL AND MANUFACTURING TECHNOLOGY, PROCEEDINGS, 2007, : 84 - +
  • [27] Preterm Birth Prediction by Classification of Spectral Features of Electrohysterography Signals using 1D Convolutional Neural Network: Preliminary Results
    Degbedzui, Derek Kweku
    Yuksel, Mehmet Emin
    Malik, Afrah Elfatih Farah
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [28] Dimensional Emotion Recognition Using EEG Signals via 1D Convolutional Neural Network
    Kaur, Sukhpreet
    Kulkarni, Nilima
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 627 - 641
  • [29] Prediction and modelling online reviews helpfulness using 1D Convolutional Neural Networks
    Olmedilla, María
    Rocío Martínez-Torres, M.
    Toral, Sergio
    Expert Systems with Applications, 2022, 198
  • [30] Prediction of operating state of hydrocyclones using vibrometry and 1D convolutional neural networks
    Tyeb, M. H.
    Mishra, S.
    Singh, A.
    Majumder, A. K.
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (02)