Classification of Partial Discharge Signals Using 1D Convolutional Neural Networks

被引:2
|
作者
Mantach, Sara [1 ]
Janani, Hamed [2 ]
Ashraf, Ahmed [1 ]
Kordi, Behzad [1 ]
机构
[1] Univ Manitoba, Elect & Comp Engn, Winnipeg, MB, Canada
[2] Verint Syst, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CNN; deep learning; insulation systems; partial discharges; POWER-CABLES; PD-SOURCES; IDENTIFICATION;
D O I
10.1109/CCECE53047.2021.9569071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For decades, partial discharge (PD) measurement has been used as a common tool for assessing the insulation condition of high voltage (HV) systems. Background noise and interference resulting from the measurement environment and other power electronic devices in the setup make PD diagnosis challenging and more difficult. Signal processing tools employed for PD classification usually require a significant effort and expertise to extract semi-automated features from the time domain PD signals. The performance of a PD detection system depends heavily on the quality of these features. With the emergence of new technologies, wherein the interference pulses become more similar to PD pulses, automatic feature extraction has become a necessary prerequisite to have a reliable PD detection system. Therefore, the implementation of techniques based on deep neural networks that enable automated feature extraction and classification is needed. In this paper, a one dimensional convolutional neural network has been designed that takes a set of time series waveforms as the input and is capable of classifying PD sources in the presence of additive Gaussian noise and discrete spectral interference.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Heartbeat Classification Using 1D Convolutional Neural Networks
    Shaker, Abdelrahman M.
    Tantawi, Manal
    Shedeed, Howida A.
    Tolba, Mohamed F.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 502 - 511
  • [2] Classification of 1D Signals Using Deep Neural Networks
    Ardic, Emre
    Genc, Yakup
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [4] Driver identification using 1D convolutional neural networks with vehicular CAN signals
    Hu, Hongyu
    Liu, Jiarui
    Gao, Zhenhai
    Wang, Pin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (13) : 1799 - 1809
  • [5] Feature extraction and classification of heart sound using 1D convolutional neural networks
    Li, Fen
    Liu, Ming
    Zhao, Yuejin
    Kong, Lingqin
    Dong, Liquan
    Liu, Xiaohua
    Hui, Mei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (01)
  • [6] Feature extraction and classification of heart sound using 1D convolutional neural networks
    Fen Li
    Ming Liu
    Yuejin Zhao
    Lingqin Kong
    Liquan Dong
    Xiaohua Liu
    Mei Hui
    EURASIP Journal on Advances in Signal Processing, 2019
  • [7] DIAGNOSIS OF PARTIAL DISCHARGE SIGNALS USING NEURAL NETWORKS AND MINIMUM DISTANCE CLASSIFICATION
    KRANZ, HG
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1993, 28 (06): : 1016 - 1024
  • [8] Joint Sample Expansion and 1D Convolutional Neural Networks for Tumor Classification
    Liu, Jian
    Cheng, Yuhu
    Wang, Xuesong
    Kong, Yi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 135 - 141
  • [9] Detection of visual pursuits using 1D convolutional neural networks
    Carneiro, Alex Torquato S.
    Coutinho, Flavio Luiz
    Morimoto, Carlos H.
    PATTERN RECOGNITION LETTERS, 2024, 179 : 45 - 51
  • [10] Sunshine Duration Prediction Using 1D Convolutional Neural Networks
    Mulyadi, Andri
    Djamal, Esmeralda C.
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 77 - 81