On k-antichains in the unit n-cube

被引:0
|
作者
Pelekis, Christos [1 ]
Vlasak, Vaclav [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 96卷 / 3-4期
关键词
k-antichains; Hausdorff measure; singular function; THEOREM;
D O I
10.5486/PMD.2020.8787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A chain in the unit n-cube is a set C subset of [0,1](n) such that for every x = (x(1), ..., x(n)) and y = (y(1), ..., y(n)) in C, we either have x(i) <= y(i) for all i is an element of [n], or x(i) >= y(i) for all i is an element of [n]. We consider subsets A, of the unit n-cube [0, 1](n), that satisfy card(A boolean AND C) <= k, for all chains C subset of [0, 1](n), where k is a fixed positive integer. We refer to such a set A as a k-antichain. We show that the (n - 1)-dimensional Hausdorff measure of a k-antichain in [0, 1](n) is at most kn and that the bound is asymptotically sharp. Moreover, we conjecture that there exist k-antichains in [0, 1](n) whose (n - 1)-dimensional Hausdorff measure equals kn, and we verify the validity of this conjecture when n = 2.
引用
收藏
页码:503 / 511
页数:9
相关论文
共 50 条
  • [21] Processor allocation in k-ary n-cube multiprocessors
    Chuang, PJ
    Wu, CM
    THIRD INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS, PROCEEDINGS (I-SPAN '97), 1997, : 211 - 214
  • [22] Load unbalance in k-ary n-cube networks
    Miguel-Alonso, J
    Gregorio, JA
    Puente, V
    Vallejo, F
    Beivide, R
    EURO-PAR 2004 PARALLEL PROCESSING, PROCEEDINGS, 2004, 3149 : 900 - 907
  • [23] Fault diameter of k-ary n-cube networks
    Day, K
    AlAyyoub, AE
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (09) : 903 - 907
  • [24] Embedding cycles and paths in a k-ary n-cube
    Hsieh, Sun-Yuan
    Lin, Tsong-Jie
    2007 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLS 1 AND 2, 2007, : 299 - 305
  • [25] On the Spanning Cyclability of k-ary n-cube Networks
    Qiao, Hongwei
    Zhang, Wanping
    SYMMETRY-BASEL, 2024, 16 (08):
  • [26] Adaptive routing in k-ary n-cube multicomputers
    Yang, CS
    Tsai, YM
    Tsai, YL
    1996 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 1996, : 404 - 411
  • [27] Maximum Number of Constant Weight Vertices of the Unit n-Cube Contained in a k-Dimensional Subspace
    R. Ahlswede
    H. Aydinian
    L. Khachatrian
    Combinatorica, 2003, 23 : 5 - 22
  • [28] Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace
    Ahlswede, R
    Aydinian, H
    Khachatrian, L
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 390 - 390
  • [29] Optical transpose k-ary n-cube networks
    Day, K
    JOURNAL OF SYSTEMS ARCHITECTURE, 2004, 50 (11) : 697 - 705
  • [30] The conditional node connectivity of the k-ary n-cube
    Day, K
    Harous, S
    Al-Ayyoub, AE
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOL VI, PROCEEDINGS, 1999, : 2706 - 2710