Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace

被引:0
|
作者
Ahlswede, R [1 ]
Aydinian, H [1 ]
Khachatrian, L [1 ]
机构
[1] Univ Bielefeld, D-4800 Bielefeld, Germany
关键词
D O I
10.1109/ISIT.2000.866688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A seemingly basic geometrical extremal problem is introduced and solved. An extension of the solution to multi-sets is presented. Further, a connection to the (simpler) Erdos-Moser problem is explained.
引用
收藏
页码:390 / 390
页数:1
相关论文
共 17 条
  • [1] Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace
    Ahlswede, R
    Aydinian, H
    Khachatrian, L
    COMBINATORICA, 2003, 23 (01) : 5 - 22
  • [2] Maximum Number of Constant Weight Vertices of the Unit n-Cube Contained in a k-Dimensional Subspace
    R. Ahlswede
    H. Aydinian
    L. Khachatrian
    Combinatorica, 2003, 23 : 5 - 22
  • [3] COUNTING TRIANGLES THAT SHARE THEIR VERTICES WITH THE UNIT N-CUBE
    Brandts, Jan
    Cihangir, Apo
    APPLICATIONS OF MATHEMATICS 2013, 2013, : 1 - 12
  • [4] On k-antichains in the unit n-cube
    Pelekis, Christos
    Vlasak, Vaclav
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (3-4): : 503 - 511
  • [5] HOW MANY DEGENERATE SIMPLICES ARE GENERATED BY N + 1 VERTICES OF THE UNIT N-CUBE
    RAKTOE, BL
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (01): : 49 - 49
  • [6] n-Cube network:: node disjoint shortest paths for maximal distance pairs of vertices
    Gonzalez, TF
    Serena, D
    PARALLEL COMPUTING, 2004, 30 (08) : 973 - 998
  • [7] Pancyclicity of k-ary n-cube networks with faulty vertices and edges
    Li, Jing
    Liu, Di
    Yuan, Jun
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (03) : 231 - 238
  • [8] Largest Connected Component of a k-ary n-cube with Faulty Vertices
    Dong, Qiang
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2013, 29 (04) : 777 - 783
  • [9] Unchanging the diameter of k-ary n-cube networks with faulty vertices
    Wang, Shiying
    Li, Jing
    Yang, Yuxing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (01) : 15 - 28
  • [10] ARRANGEMENT OF CHARGES AT VERTICES OF AN N-DIMENSIONAL UNIT CUBE
    ZILBERMAN, BS
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (03): : 546 - &