Simulation and inference for stochastic volatility models driven by Levy processes

被引:18
|
作者
Gander, Matthew P. S. [1 ]
Stephens, David A.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
关键词
fractional; long-memory; ornstein-uhlenbeck process; power decay process; volatility;
D O I
10.1093/biomet/asm048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study Ornstein-Uhlenbeck stochastic processes driven by Levy processes, and extend them to more general non-Ornstein-Uhlenbeck models. In particular, we investigate the means of making the correlation structure in the volatility process more flexible. For one model, we implement a method for introducing quasi long-memory into the volatility model. We demonstrate that the models can be fitted to real share price returns data.
引用
收藏
页码:627 / 646
页数:20
相关论文
共 50 条
  • [41] Algebraic structures and stochastic differential equations driven by Levy processes
    Curry, Charles
    Ebrahimi-Fard, Kurusch
    Malham, Simon J. A.
    Wiese, Anke
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2221):
  • [42] Global properties of stochastic Loewner evolution driven by Levy processes
    Oikonomou, P.
    Rushkin, I.
    Gruzberg, I. A.
    Kadanoff, L. P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [43] Explosive solutions for stochastic differential equations driven by Levy processes
    Xing, Jiamin
    Li, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (01) : 94 - 105
  • [44] Reflected backward stochastic differential equations driven by Levy processes
    Ren, Yong
    Hu, Lanying
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (15) : 1559 - 1566
  • [45] Backstepping control design for stochastic systems driven by Levy processes
    Do, K. D.
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (01) : 68 - 80
  • [46] Inverse optimal control of stochastic systems driven by Levy processes
    Do, K. D.
    AUTOMATICA, 2019, 107 : 539 - 550
  • [47] EFFICIENT SIMULATION OF LEVY-DRIVEN POINT PROCESSES
    Qu, Yan
    Dassios, Angelos
    Zhao, Hongbiao
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (04) : 927 - 966
  • [48] Term structure models driven by general Levy processes
    Eberlein, E
    Raible, S
    MATHEMATICAL FINANCE, 1999, 9 (01) : 31 - 53
  • [49] Financial market models with Levy processes and time-varying volatility
    Kim, Young Shin
    Rachev, Svetlozar T.
    Bianchi, Michele Leonardo
    Fabozzi, Frank J.
    JOURNAL OF BANKING & FINANCE, 2008, 32 (07) : 1363 - 1378
  • [50] Nonparametric inference for Levy-driven Ornstein-Uhlenbeck processes
    Jongbloed, G
    Van der Meulen, FH
    Van der Vaart, AW
    BERNOULLI, 2005, 11 (05) : 759 - 791