Simulation and inference for stochastic volatility models driven by Levy processes

被引:18
|
作者
Gander, Matthew P. S. [1 ]
Stephens, David A.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
关键词
fractional; long-memory; ornstein-uhlenbeck process; power decay process; volatility;
D O I
10.1093/biomet/asm048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study Ornstein-Uhlenbeck stochastic processes driven by Levy processes, and extend them to more general non-Ornstein-Uhlenbeck models. In particular, we investigate the means of making the correlation structure in the volatility process more flexible. For one model, we implement a method for introducing quasi long-memory into the volatility model. We demonstrate that the models can be fitted to real share price returns data.
引用
收藏
页码:627 / 646
页数:20
相关论文
共 50 条
  • [31] Variational inference of the drift function for stochastic differential equations driven by Levy processes (vol 32, 061103, 2022)
    Dai, Min
    Duan, Jinqiao
    Hu, Jianyu
    Wen, Jianghui
    Wang, Xiangjun
    CHAOS, 2022, 32 (09)
  • [32] Bayesian inference for continuous-time ARMA models driven by non-Gaussian levy processes
    Godsill, Simon J.
    Yang, Gary Ligong
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5459 - 5462
  • [33] Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models
    Kastner, Gregor
    Fruehwirth-Schnatter, Sylvia
    Lopes, Hedibert Freitas
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 905 - 917
  • [34] Inference procedures for stable-Paretian stochastic volatility models
    Meintanis, Simos G.
    Taufer, Emanuele
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1199 - 1212
  • [35] A Stochastic Simulation Approach to Model Selection for Stochastic Volatility Models
    Li, Yong
    Ni, Zhong-Xin
    Lin, Jin-Guan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (07) : 1043 - 1056
  • [36] INFERENCE FOR STOCHASTIC VOLATILITY MODELS USING TIME CHANGE TRANSFORMATIONS
    Kalogeropoulos, Konstantinos
    Roberts, Gareth O.
    Dellaportas, Petros
    ANNALS OF STATISTICS, 2010, 38 (02): : 784 - 807
  • [37] Likelihood-based inference for asymmetric stochastic volatility models
    Bartolucci, F
    De Luca, G
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (03) : 445 - 449
  • [38] Stochastic PDIEs and backward doubly stochastic differential equations driven by Levy processes
    Ren, Yong
    Lin, Aihong
    Hu, Lanying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) : 901 - 907
  • [39] Stochastic control of drill-heads driven by Levy processes
    Do, K. D.
    AUTOMATICA, 2019, 103 : 36 - 45
  • [40] Lyapunov exponents of stochastic differential equations driven by Levy processes
    Qiao, Huijie
    Duan, Jinqiao
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (02): : 136 - 150