Simulation and inference for stochastic volatility models driven by Levy processes

被引:18
|
作者
Gander, Matthew P. S. [1 ]
Stephens, David A.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
关键词
fractional; long-memory; ornstein-uhlenbeck process; power decay process; volatility;
D O I
10.1093/biomet/asm048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study Ornstein-Uhlenbeck stochastic processes driven by Levy processes, and extend them to more general non-Ornstein-Uhlenbeck models. In particular, we investigate the means of making the correlation structure in the volatility process more flexible. For one model, we implement a method for introducing quasi long-memory into the volatility model. We demonstrate that the models can be fitted to real share price returns data.
引用
收藏
页码:627 / 646
页数:20
相关论文
共 50 条
  • [1] Inference in Levy-type stochastic volatility models
    Woerner, Jeannette H. C.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (02) : 531 - 549
  • [2] Inference for Levy-Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Doucet, Arnaud
    Tsagaris, Theodoros
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (01) : 1 - 22
  • [3] Stochastic volatility for Levy processes
    Carr, P
    Geman, H
    Madan, DB
    Yor, M
    MATHEMATICAL FINANCE, 2003, 13 (03) : 345 - 382
  • [4] On stochastic integration for volatility modulated Levy-driven Volterra processes
    Barndorff-Nielsen, Ole E.
    Benth, Fred Espen
    Pedersen, Jan
    Veraart, Almut E. D.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 812 - 847
  • [5] Option pricing and hedging for optimized Levy driven stochastic volatility models
    Gong, Xiao-li
    Zhuang, Xin-tian
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 118 - 127
  • [6] TAIL BEHAVIOR OF MULTIVARIATE LEVY-DRIVEN MIXED MOVING AVERAGE PROCESSES AND SUPOU STOCHASTIC VOLATILITY MODELS
    Moser, Martin
    Stelzer, Robert
    ADVANCES IN APPLIED PROBABILITY, 2011, 43 (04) : 1109 - 1135
  • [7] Analysis of filtering and smoothing algorithms for Levy-driven stochastic volatility models
    Creal, Drew D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (06) : 2863 - 2876
  • [8] Variational inference of the drift function for stochastic differential equations driven by Levy processes
    Dai, Min
    Duan, Jinqiao
    Hu, Jianyu
    Wen, Jianghui
    Wang, Xiangjun
    CHAOS, 2022, 32 (06)
  • [9] Analytical solvability and exact simulation in models with affine stochastic volatility and Levy jumps
    Zeng, Pingping
    Xu, Ziqing
    Jiang, Pingping
    Kwok, Yue Kuen
    MATHEMATICAL FINANCE, 2023, 33 (03) : 842 - 890
  • [10] Statistical inference for misspecified ergodic Levy driven stochastic differential equation models
    Uehara, Yuma
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 4051 - 4081