Turbulent cascades in anisotropic magnetohydrodynamics

被引:67
|
作者
Kinney, RM [1 ]
McWilliams, JC
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1103/PhysRevE.57.7111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cascade behavior of turbulent magnetohydrodynamics with a strong background magnetic field is examined and compared with direct numerical solutions at high Reynolds number. Resonant interactions give rise to qualitatively different behavior for modes below a characteristic wave number k(L) defined in terms of the background field. Modes with parallel wave number above k(L) are passively driven by the longer wavelength modes, even when the majority of the energy is contained in the passive wave numbers. The passive modes do not cascade to higher parallel wave numbers, so the parallel wave number spectrum is not a power law and does not extend to dissipation scales. Energy is cascaded normally to small perpendicular scales, but more rapidly in the case of the passive modes, so anisotropic spectrum develops from isotropic initial conditions. For a finite system with minimum wave number >k(L), the only dynamically controlling mode is the vertical average,or mean mode.The mean mode evolves with two-dimensional dynamics, forming coherent current structures which are mirrored by the passive modes. Because of the differential decay rates, the mean mode dominates at long times. Quantitative comparisons are made to numerical solutions of reduced magnetohydrodynamics.
引用
收藏
页码:7111 / 7121
页数:11
相关论文
共 50 条
  • [31] Stability of magnetic vortices with flow in anisotropic magnetohydrodynamics
    Kinney, R
    McWilliams, JC
    Wolansky, G
    PHYSICS OF PLASMAS, 1996, 3 (10) : 3583 - 3590
  • [32] Anisotropic cascades in interstellar medium turbulence
    Shaikh, Dastgeer
    Zank, Gary P.
    ASTROPHYSICAL JOURNAL, 2007, 656 (01): : L17 - L20
  • [33] Generation of momentum transport in weakly turbulent β -plane magnetohydrodynamics
    Heinonen, R. A.
    Diamond, P. H.
    Katz, M. F. D.
    Ronimo, G. E.
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [34] Two-dimensional magnetohydrodynamics and turbulent coronal heating
    Dmitruk, P
    Gomez, D
    TWO-DIMENSIONAL TURBULENCE IN PLASMAS AND FLUIDS - RESEARCH WORKSHOP, 1997, (414): : 205 - 211
  • [35] MAGNETOHYDRODYNAMICS OF AVERAGE FIELDS IN AN INHOMOGENEOUS TURBULENT MEDIUM.
    Kichatinov, L.L.
    Magnetohydrodynamics New York, N.Y., 1983, 18 (03): : 266 - 272
  • [36] Turbulent energy dissipation and intermittency in ambipolar diffusion magnetohydrodynamics
    Momferratos, G.
    Lesaffre, P.
    Falgarone, E.
    des Forets, G. Pineau
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) : 86 - 101
  • [37] ROTATIONAL DISCONTINUITY IN MAGNETOHYDRODYNAMICS WITH ANISOTROPIC PRESSURE .2.
    BLOKHIN, AM
    TRAKHININ, YL
    SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (02) : 250 - 259
  • [38] Stability Analysis of Magnetohydrodynamics Waves in Compressible Turbulent Plasma
    Morad, Adel M.
    Maize, S. M. A.
    Nowaya, A. A.
    Rammah, Y. S.
    JOURNAL OF NANOFLUIDS, 2020, 9 (03) : 196 - 202
  • [39] Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics
    Galtier, S
    Bhattacharjee, A
    PHYSICS OF PLASMAS, 2003, 10 (08) : 3065 - 3076
  • [40] Singular Measures and Information Capacity of Turbulent Cascades
    Shavit, Michal
    Falkovich, Gregory
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)