Turbulent cascades in anisotropic magnetohydrodynamics

被引:67
|
作者
Kinney, RM [1 ]
McWilliams, JC
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1103/PhysRevE.57.7111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cascade behavior of turbulent magnetohydrodynamics with a strong background magnetic field is examined and compared with direct numerical solutions at high Reynolds number. Resonant interactions give rise to qualitatively different behavior for modes below a characteristic wave number k(L) defined in terms of the background field. Modes with parallel wave number above k(L) are passively driven by the longer wavelength modes, even when the majority of the energy is contained in the passive wave numbers. The passive modes do not cascade to higher parallel wave numbers, so the parallel wave number spectrum is not a power law and does not extend to dissipation scales. Energy is cascaded normally to small perpendicular scales, but more rapidly in the case of the passive modes, so anisotropic spectrum develops from isotropic initial conditions. For a finite system with minimum wave number >k(L), the only dynamically controlling mode is the vertical average,or mean mode.The mean mode evolves with two-dimensional dynamics, forming coherent current structures which are mirrored by the passive modes. Because of the differential decay rates, the mean mode dominates at long times. Quantitative comparisons are made to numerical solutions of reduced magnetohydrodynamics.
引用
收藏
页码:7111 / 7121
页数:11
相关论文
共 50 条
  • [21] STABILITY AND INSTABILITY OF THE THERMODIFFUSIVE EQUILIBRIUM IN ANISOTROPIC MAGNETOHYDRODYNAMICS
    MAIELLARO, M
    ARCHIVES OF MECHANICS, 1984, 36 (03): : 357 - 363
  • [22] HAMILTONIAN THEORY OF RELATIVISTIC MAGNETOHYDRODYNAMICS WITH ANISOTROPIC PRESSURE
    HOLM, DD
    KUPERSHMIDT, BA
    PHYSICS OF FLUIDS, 1986, 29 (11) : 3889 - 3891
  • [23] Dissipation range turbulent cascades in plasmas
    Terry, P. W.
    Almagri, A. F.
    Fiksel, G.
    Forest, C. B.
    Hatch, D. R.
    Jenko, F.
    Nornberg, M. D.
    Prager, S. C.
    Rahbarnia, K.
    Ren, Y.
    Sarff, J. S.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [24] Propagation of linear waves in relativistic anisotropic magnetohydrodynamics
    Gebretsadkan, WB
    Kalra, GL
    PHYSICAL REVIEW E, 2002, 66 (05): : 4
  • [25] Turbulent cascades in foreign exchange markets
    Ghashghaie, S
    Breymann, W
    Peinke, J
    Talkner, P
    Dodge, Y
    NATURE, 1996, 381 (6585) : 767 - 770
  • [26] Classical and semirelativistic magnetohydrodynamics with anisotropic ion pressure
    Meng, Xing
    Toth, Gabor
    Sokolov, Igor V.
    Gombosi, Tamas I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3610 - 3622
  • [27] Saint Venant's estimates in anisotropic magnetohydrodynamics
    Borrelli A.
    Patria M.C.
    Annali dell’Università di Ferrara, 2001, 47 (1): : 145 - 167
  • [28] Vortex dynamics of turbulent energy cascades
    Almoguera, Adrian Parrado
    Kivotides, Demosthenes
    Physics of Fluids, 2024, 36 (12)
  • [29] Anomalous magnetohydrodynamics with constant anisotropic electric conductivities
    Wang, Ren-jie
    Copinger, Patrick
    Pu, Shi
    NUCLEAR PHYSICS A, 2021, 1005
  • [30] SHOCK-WAVES IN RELATIVISTIC ANISOTROPIC MAGNETOHYDRODYNAMICS
    CISSOKO, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (18): : 1233 - 1236