Turbulent cascades in anisotropic magnetohydrodynamics

被引:67
|
作者
Kinney, RM [1 ]
McWilliams, JC
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1103/PhysRevE.57.7111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cascade behavior of turbulent magnetohydrodynamics with a strong background magnetic field is examined and compared with direct numerical solutions at high Reynolds number. Resonant interactions give rise to qualitatively different behavior for modes below a characteristic wave number k(L) defined in terms of the background field. Modes with parallel wave number above k(L) are passively driven by the longer wavelength modes, even when the majority of the energy is contained in the passive wave numbers. The passive modes do not cascade to higher parallel wave numbers, so the parallel wave number spectrum is not a power law and does not extend to dissipation scales. Energy is cascaded normally to small perpendicular scales, but more rapidly in the case of the passive modes, so anisotropic spectrum develops from isotropic initial conditions. For a finite system with minimum wave number >k(L), the only dynamically controlling mode is the vertical average,or mean mode.The mean mode evolves with two-dimensional dynamics, forming coherent current structures which are mirrored by the passive modes. Because of the differential decay rates, the mean mode dominates at long times. Quantitative comparisons are made to numerical solutions of reduced magnetohydrodynamics.
引用
收藏
页码:7111 / 7121
页数:11
相关论文
共 50 条
  • [1] Turbulent cascades, transfer, and scale interactions in magnetohydrodynamics
    Alexakis, A.
    Mininni, P. D.
    Pouquet, A.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [2] Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades
    Aluie, Hussein
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [3] INVERSE CASCADES IN MAGNETOHYDRODYNAMICS
    MONTGOMERY, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1075 - 1075
  • [4] TURBULENT CASCADES
    SREENIVASAN, KR
    STOLOVITZKY, G
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) : 311 - 333
  • [5] Magnetohydrodynamics in a turbulent swirling flow
    Odier, P
    Pinton, JF
    Fauve, S
    ADVANCES IN TURBULENCE VII, 1998, 46 : 407 - 410
  • [6] Magnetohydrodynamics in turbulent swirling flow
    Pinton, JF
    Odier, P
    Fauve, S
    FUNDAMENTAL PROBLEMATIC ISSUES IN TURBULENCE, 1999, : 467 - 470
  • [7] TURBULENT RELAXATION PROCESSES IN MAGNETOHYDRODYNAMICS
    TING, AC
    MATTHAEUS, WH
    MONTGOMERY, D
    PHYSICS OF FLUIDS, 1986, 29 (10) : 3261 - 3274
  • [8] Locality of turbulent cascades
    Eyink, GL
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 207 (1-2) : 91 - 116
  • [9] Magnetohydrodynamics with Anisotropic Ion Pressure
    Meng, Xing
    Toth, Gabor
    Gombosi, Tamas I.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2011, 2011, 459 : 340 - 345
  • [10] Renormalization group analysis of turbulent magnetohydrodynamics
    Barkhudarov, E. D.
    Vvedensky, D. D.
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2013, 1 (01) : 74 - 88