A novel high-conductivity IGBT (HiGT) with a short circuit capability

被引:33
|
作者
Mori, M [1 ]
Uchino, Y [1 ]
Sakano, J [1 ]
Kobayashi, H [1 ]
机构
[1] Hitachi Ltd, Hitachi Res Lab, Hitachi, Ibaraki 3191292, Japan
关键词
D O I
10.1109/ISPSD.1998.702737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new high-conductivity IGBT (HiGT) with a DMOS structure and an n-type hole-barrier layer surrounding a p-layer. The hole-barrier layer acts as a barrier to prevent the holes from flowing into the p-layer and stores them in the n(-)-layer. The HiGT provides a collector-emitter saturation voltage (V-CE(sat)) of about 1 V lower than that of the conventional IGBT, while it maintains a high blocking voltage of 3.3 kV by controlling the carrier concentration of the hole-barrier layer. The HiGT has tough short circuit capability of more than 10 mu s at 125 degrees C with a saturation current similar to that of the conventional IGBT.
引用
收藏
页码:429 / 432
页数:4
相关论文
共 50 条
  • [41] Short-Circuit Capability Optimization of Press-Pack IGBT by Improving Active Edge Heat Dissipation
    Yu, Yue
    Li, Hui
    Yao, Ran
    Iannuzzo, Francesco
    Zhu, Zheyan
    Chen, Xianping
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (05) : 6143 - 6156
  • [42] APPARATUS FOR THE THERMAL CHARACTERIZATION OF HIGH-CONDUCTIVITY SUBSTRATES
    PARIS, P
    HAUSSONNE, JM
    LOSTEC, J
    AMERICAN CERAMIC SOCIETY BULLETIN, 1993, 72 (05): : 77 - 82
  • [43] The zwitterion effect in high-conductivity polyelectrolyte materials
    Churat Tiyapiboonchaiya
    Jennifer M. Pringle
    Jiazeng Sun
    Nolene Byrne
    Patrick C. Howlett
    Douglas R. MacFarlane
    Maria Forsyth
    Nature Materials, 2004, 3 : 29 - 32
  • [44] Dual MOS gate controlled thyristor (DMGCT) structure with short-circuit withstand capability superior to IGBT
    Ajit, JS
    IEEE ELECTRON DEVICE LETTERS, 1996, 17 (06) : 294 - 296
  • [45] SILVER DIFFUSION IN A HIGH-CONDUCTIVITY SOLID ELECTROLYTE
    BENTLE, GG
    JOURNAL OF APPLIED PHYSICS, 1968, 39 (08) : 4036 - &
  • [46] High-Conductivity Stoichiometric Titanium Nitride for Bioelectronics
    Gablech, Imrich
    Migliaccio, Ludovico
    Brodsky, Jan
    Havlicek, Marek
    Podesva, Pavel
    Hrdy, Radim
    Ehlich, Jiri
    Gryszel, Maciej
    Glowacki, Eric Daniel
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04)
  • [47] Reflection spectrum of high-conductivity solid solutions
    Vakulenko, OV
    Kravchenko, VM
    Stashhuk, VS
    Ghorodnichyj, OP
    Brodovyj, VA
    Vjalyj, MG
    MATERIAL SCIENCE AND MATERIAL PROPERTIES FOR INFRARED OPTOELECTRONICS, 1997, 3182 : 289 - 292
  • [48] CAN UNDOPED POLYANILINE HAVE A HIGH-CONDUCTIVITY
    GRUGER, A
    REGIS, A
    COLOMBAN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (05): : 191 - 197
  • [49] A Novel 4H-SiC IGBT Structure with Improved Trade-off between Short Circuit Capability and On-state Voltage Drop
    Sung, Woongji
    Huang, Alex Q.
    Baliga, B. Jayant
    2010 22ND INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS (ISPSD), 2010, : 217 - 220
  • [50] The zwitterion effect in high-conductivity polyelectrolyte materials
    Tiyapiboonchaiya, C
    Pringle, JM
    Sun, JZ
    Byrne, N
    Howlett, PC
    Macfarlane, DR
    Forsyth, M
    NATURE MATERIALS, 2004, 3 (01) : 29 - 32