Explicitly correlated second-order Moller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context

被引:16
|
作者
Wang, Yang Min [1 ]
Haettig, Christof [2 ]
Reine, Simen [3 ]
Valeev, Edward [4 ]
Kjrgaard, Thomas [1 ]
Kristensen, Kasper [1 ]
机构
[1] Aarhus Univ, Dept Chem, qLEAP Ctr Theoret Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[2] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, POB 1033, N-1315 Blindern, Norway
[4] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 20期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ELECTRON CORRELATION METHODS; SCALING COUPLED-CLUSTER; WAVE-FUNCTIONS; CORRELATION CUSP; LOCAL TREATMENT; GROUND-STATE; BASIS-SETS; TERMS; ENERGY; OPTIMIZATION;
D O I
10.1063/1.4951696
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Moller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条