Energy-based automatic determination of buffer region in the divide-and-conquer second-order Moller-Plesset perturbation theory

被引:4
|
作者
Fujimori, Toshikazu [1 ]
Kobayashi, Masato [2 ,3 ,4 ]
Taketsugu, Tetsuya [2 ,3 ,4 ]
机构
[1] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido, Japan
[2] Hokkaido Univ, Dept Chem, Fac Sci, Sapporo, Hokkaido 0600810, Japan
[3] Hokkaido Univ, WPI ICReDD, Sapporo, Hokkaido, Japan
[4] Kyoto Univ, ESICB, Kyoto, Japan
基金
日本学术振兴会;
关键词
divide‐ and‐ conquer method; electron correlation; fragmentation; Laplace transformed MP2; linear‐ scaling calculation; MOLECULAR-DYNAMICS SIMULATIONS; FUNCTIONAL TIGHT-BINDING; FRAGMENTATION APPROACH; DENSITY ANALYSIS; MP2; IMPLEMENTATION; ROUTE;
D O I
10.1002/jcc.26486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the linear-scaling divide-and-conquer (DC) electronic structure method, each subsystem is calculated together with the neighboring buffer region, the size of which affects the energy error introduced by the fragmentation in the DC method. The DC self-consistent field calculation utilizes a scheme to automatically determine the appropriate buffer region that is as compact as possible for reducing the computational time while maintaining acceptable accuracy (J. Comput. Chem. 2018, 39, 909). To extend the automatic determination scheme of the buffer region to the DC second-order Moller-Plesset perturbation (MP2) calculation, a scheme for estimating the subsystem MP2 correlation energy contribution from each atom in the buffer region is proposed. The estimation is based on the atomic orbital Laplace MP2 formalism. Based on this, an automatic buffer determination scheme for the DC-MP2 calculation is constructed and its performance for several types of systems is assessed.
引用
收藏
页码:620 / 629
页数:10
相关论文
共 50 条
  • [1] An effective energy gradient expression for divide-and-conquer second-order Moller-Plesset perturbation theory
    Kobayashi, Masato
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [2] Second-order Moller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix
    Kobayashi, Masato
    Akama, Tomoko
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (20):
  • [3] Alternative linear-scaling methodology for the second-order Moller-Plesset perturbation calculation based on the divide-and-conquer method
    Kobayashi, Masato
    Imamura, Yutaka
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (07):
  • [4] Two-Level Hierarchical Parallelization of Second-Order Moller-Plesset Perturbation Calculations in Divide-and-Conquer Method
    Katouda, Michio
    Kobayashi, Masato
    Nakai, Hiromi
    Nagase, Shigeru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (13) : 2756 - 2764
  • [5] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [6] Linear-scaling divide-and-conquer second-order Moller-Plesset perturbation calculation for open-shell systems: implementation and application
    Yoshikawa, Takeshi
    Kobayashi, Masato
    Nakai, Hiromi
    THEORETICAL CHEMISTRY ACCOUNTS, 2011, 130 (2-3) : 411 - 417
  • [7] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155
  • [8] Dispersion-corrected Moller-Plesset second-order perturbation theory
    Tkatchenko, Alexandre
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Scheffler, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09):
  • [9] An atomic orbital-based reformulation of energy gradients in second-order Moller-Plesset perturbation theory
    Schweizer, Sabine
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):
  • [10] Stability of Hydrogen Hydrates from Second-Order Moller-Plesset Perturbation Theory
    Kosata, Jan
    Merkl, Padryk
    Teeratchanan, Pattanasak
    Hermann, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5624 - 5629