Nonlinear quantum error correction

被引:0
|
作者
Reichert, Maximilian [1 ,2 ,3 ,4 ,5 ]
Tessler, Louis W. [4 ,6 ]
Bergmann, Marcel [7 ]
van Loock, Peter [7 ]
Byrnes, Tim [1 ,4 ,8 ,9 ,10 ,11 ]
机构
[1] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[3] Univ Basque Country UPV EHU, EHU Quantum Ctr, Bilbao 48080, Spain
[4] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
[5] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[6] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[7] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[8] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[9] New York Univ Abu Dhabi, NYUAD Res Inst, Ctr Quantum & Topol Syst CQTS, Abu Dhabi, U Arab Emirates
[10] Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[11] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
DECOHERENCE; INFORMATION; CODES;
D O I
10.1103/PhysRevA.105.062438
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a theory of quantum error correction (QEC) for a subclass of states. In the standard theory of QEC, the set of all encoded states is formed by an arbitrary linear combination of the codewords. However, this can be more general than required for a given quantum protocol which may only traverse a subclass of states within the Hilbert space. Here we propose the concept of nonlinear QEC (NLQEC), where the encoded states are not necessarily a linear combination of codewords. We introduce a sufficiency criterion for NLQEC with respect to the subclass of states. The new criterion gives a more relaxed condition for the formation of a QEC code, such that under the assumption that the states are within the subclass of states, the errors are correctable. This allows us, for instance, to effectively circumvent the no-go theorems regarding optical QEC for Gaussian states and channels, for which we present explicit examples.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Imaging Stars with Quantum Error Correction
    Huang, Zixin
    Brennen, Gavin K.
    Ouyang, Yingkai
    PHYSICAL REVIEW LETTERS, 2022, 129 (21)
  • [42] Quantum error correction and large N
    Milekhin, Alexey
    SCIPOST PHYSICS, 2021, 11 (05):
  • [43] Entanglement purification and quantum error correction
    Duer, W.
    Briegel, H. J.
    REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) : 1381 - 1424
  • [44] Key ideas in quantum error correction
    Raussendorf, Robert
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1975): : 4541 - 4565
  • [45] Dimensional jump in quantum error correction
    Bombin, Hector
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [46] The multiplicative domain in quantum error correction
    Choi, Man-Duen
    Johnston, Nathaniel
    Kribs, David W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [47] Simulation of Quantum Error Correction with Mathematica
    Gerdt, Vladimir P.
    Prokopenya, Alexander N.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2013, 2013, 8136 : 116 - 129
  • [48] Molecular Machines for Quantum Error Correction
    Guerreiro, Thiago
    PRX QUANTUM, 2021, 2 (03):
  • [49] Probabilities of Failure for Quantum Error Correction
    A. J. Scott
    Quantum Information Processing, 2005, 4 : 399 - 431
  • [50] Algebraic formulation of quantum error correction
    Beny, Cedric
    Kribs, David W.
    Pasieka, Aron
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 597 - 603