Nonlinear quantum error correction

被引:0
|
作者
Reichert, Maximilian [1 ,2 ,3 ,4 ,5 ]
Tessler, Louis W. [4 ,6 ]
Bergmann, Marcel [7 ]
van Loock, Peter [7 ]
Byrnes, Tim [1 ,4 ,8 ,9 ,10 ,11 ]
机构
[1] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[3] Univ Basque Country UPV EHU, EHU Quantum Ctr, Bilbao 48080, Spain
[4] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
[5] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[6] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[7] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[8] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[9] New York Univ Abu Dhabi, NYUAD Res Inst, Ctr Quantum & Topol Syst CQTS, Abu Dhabi, U Arab Emirates
[10] Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[11] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
DECOHERENCE; INFORMATION; CODES;
D O I
10.1103/PhysRevA.105.062438
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a theory of quantum error correction (QEC) for a subclass of states. In the standard theory of QEC, the set of all encoded states is formed by an arbitrary linear combination of the codewords. However, this can be more general than required for a given quantum protocol which may only traverse a subclass of states within the Hilbert space. Here we propose the concept of nonlinear QEC (NLQEC), where the encoded states are not necessarily a linear combination of codewords. We introduce a sufficiency criterion for NLQEC with respect to the subclass of states. The new criterion gives a more relaxed condition for the formation of a QEC code, such that under the assumption that the states are within the subclass of states, the errors are correctable. This allows us, for instance, to effectively circumvent the no-go theorems regarding optical QEC for Gaussian states and channels, for which we present explicit examples.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Quantum error correction for beginners
    Devitt, Simon J.
    Munro, William J.
    Nemoto, Kae
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [22] Introduction to quantum error correction
    Steane, AM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1739 - 1757
  • [23] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [24] Methods of quantum error correction
    Grassl, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 740 - 743
  • [25] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [26] Catalytic Quantum Error Correction
    Brun, Todd A.
    Devetak, Igor
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3073 - 3089
  • [27] Realization of quantum error correction
    J. Chiaverini
    D. Leibfried
    T. Schaetz
    M. D. Barrett
    R. B. Blakestad
    J. Britton
    W. M. Itano
    J. D. Jost
    E. Knill
    C. Langer
    R. Ozeri
    D. J. Wineland
    Nature, 2004, 432 : 602 - 605
  • [28] Deep Quantum Error Correction
    Choukroun, Yoni
    Wolf, Lior
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 64 - 72
  • [29] Motional quantum error correction
    Steinbach, J
    Twamley, J
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 453 - 485
  • [30] Operator quantum error correction
    Kribs, David W.
    Laflamme, Raymond
    Poulin, David
    Lesosky, Maia
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (4-5) : 382 - 398