Segmentation of fetal 3d ultrasound based on statistical prior and deformable model

被引:9
|
作者
Anquez, Jeremie [1 ]
Angelini, Elsa D. [1 ]
Bloch, Isabelle [1 ]
机构
[1] LTCI CNRS, Inst Telecom, TELECOM ParisTech, Paris, France
关键词
3D ultrasound; segmentation; deformable model; statistical prior;
D O I
10.1109/ISBI.2008.4540921
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A statistical variational framework is proposed for the fetus and uterus segmentation in ultrasound images. The Rayleigh and exponential distributions are used to model the pixel intensity. An energy is derived to perform an optimal partition of the 3D data into two classes corresponding to these two distributions, in a Bayesian MAP framework. Some numerical difficulties are raised by the combination of heterogeneous distributions in a variational level-set formulation, as discussed in the paper. Results on simulated and real data are presented and show that assuming different distributions provides better results than with the sole Rayleigh distribution.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [1] Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model
    Benjamín Gutiérrez-Becker
    Fernando Arámbula Cosío
    Mario E. Guzmán Huerta
    Jesús Andrés Benavides-Serralde
    Lisbeth Camargo-Marín
    Verónica Medina Bañuelos
    Medical & Biological Engineering & Computing, 2013, 51 : 1021 - 1030
  • [2] Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model
    Gutierrez-Becker, Benjamin
    Arambula Cosio, Fernando
    Guzman Huerta, Mario E.
    Andres Benavides-Serralde, Jesus
    Camargo-Marin, Lisbeth
    Medina Banuelos, Veronica
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (09) : 1021 - 1030
  • [3] Segmentation of 3D deformable objects with level set based prior models
    Yang, J
    Tagare, HD
    Staib, LH
    Duncan, JS
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 85 - 88
  • [4] Chestwall segmentation in 3D breast ultrasound using a deformable volume model
    Huisman, Henkjan
    Karssemeijer, Nico
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2007, 4584 : 245 - +
  • [5] Abdomen Segmentation in 3D Fetal Ultrasound Using CNN-powered Deformable Models
    Schmidt-Richberg, Alexander
    Brosch, Tom
    Schadewaldt, Nicole
    Klinder, Tobias
    Cavallaro, Angelo
    Salim, Ibtisam
    Roundhill, David
    Papageorghiou, Aris
    Lorenz, Cristian
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 52 - 61
  • [6] 2D/3D fetal cardiac dataset segmentation using a deformable model
    Dindoyal, Irving
    Lambrou, Tryphon
    Deng, Jing
    Todd-Pokropek, Andrew
    MEDICAL PHYSICS, 2011, 38 (07) : 4338 - 4349
  • [7] 3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images
    Velasquez-Rodriguez, Gustavo A. R.
    Fanti-Gutierrez, Zian
    Torres, Fabian
    Medina-Banuelos, Veronica
    Escalante-Ramirez, Boris
    Marin, Lisbeth Camargo
    Huerta, Mario Guzman
    Cosio, Fernando Arambula
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [8] Using surface variability characteristics for segmentation of deformable 3D objects with application to piecewise statistical deformable model
    Peng Du
    Horace H. S. Ip
    Bei Hua
    Jun Feng
    The Visual Computer, 2012, 28 : 493 - 509
  • [9] Using surface variability characteristics for segmentation of deformable 3D objects with application to piecewise statistical deformable model
    Du, Peng
    Ip, Horace H. S.
    Hua, Bei
    Feng, Jun
    VISUAL COMPUTER, 2012, 28 (05): : 493 - 509
  • [10] Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior
    Yang, Xiaofeng
    Schuster, David
    Master, Viraj
    Nieh, Peter
    Fenster, Aaron
    Fei, Baowei
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964