3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images

被引:0
|
作者
Velasquez-Rodriguez, Gustavo A. R. [1 ]
Fanti-Gutierrez, Zian [2 ]
Torres, Fabian [3 ]
Medina-Banuelos, Veronica [4 ]
Escalante-Ramirez, Boris [5 ]
Marin, Lisbeth Camargo [6 ]
Huerta, Mario Guzman [6 ]
Cosio, Fernando Arambula [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Postgrad Program Elect Engn, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad Univ, Mexico City 04510, Mexico
[6] Natl Inst Perinatol, Dept Translat Med, Mexico City 11000, Mexico
[7] Univ Nacl Autonoma Mexico, Unidad Acad IIMAS Yucatan, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Merida 97205, Yucatan, Mexico
关键词
3D segmentation of the cerebellum; Spherical harmonics; Point distribution models; CLASSIFICATION;
D O I
10.1007/s11760-024-03615-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cerebellum is an important structure to determine fetal development because its volume has a high correlation with gestational age. Manual annotation of the cerebellum in 3D ultrasound images (to measure the cerebellar volume) requires highly trained experts to perform a time-consuming task. To assist in this task, we developed a totally automatic system for the 3D segmentation of the cerebellum in ultrasound images of the fetal brain, using a 3D Point Distribution Model (PDM) obtained from another statistical shape model based on a spherical harmonics (SPHARMs) representation, which provides a very efficient basis for the construction of statistical shape models of 3D organs with a spherical topology. Our PDM of the fetal cerebellum was automatically adjusted with the optimization of an objective function based on gray level voxel profiles, using a genetic algorithm. An automatic initialization and plane selection scheme was also developed, based on the detection of the cerebellum on each plane by a convolutional neural network (YOLO v2). Our results of the 3D segmentation of 18 ultrasound volumes of the fetal brain are: Dice coefficient of 0.83 +/- 0.10 and Hausdorff distance of 3.61 +/- 0.83 mm. The methods reported show potential to successfully assist the experts in the assessment of fetal growth in ultrasound volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model
    Gutierrez-Becker, Benjamin
    Arambula Cosio, Fernando
    Guzman Huerta, Mario E.
    Andres Benavides-Serralde, Jesus
    Camargo-Marin, Lisbeth
    Medina Banuelos, Veronica
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (09) : 1021 - 1030
  • [2] Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model
    Benjamín Gutiérrez-Becker
    Fernando Arámbula Cosío
    Mario E. Guzmán Huerta
    Jesús Andrés Benavides-Serralde
    Lisbeth Camargo-Marín
    Verónica Medina Bañuelos
    Medical & Biological Engineering & Computing, 2013, 51 : 1021 - 1030
  • [3] Statistical shape (ASM) and appearance (AAM) models for the segmentation of the cerebellum in fetal ultrasound
    Reyes Lopez, Misael
    Arambula Cosio, Fernando
    13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2017, 10572
  • [4] Automatic segmentation of the cerebellum of fetuses on 3D ultrasound images, using a 3D Point Distribution Model
    Gutierrez Becker, Benjamin
    Arambula Cosio, Fernando
    Guzman Huerta, Mario E.
    Andres Benavides-Serralde, Jesus
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4731 - 4734
  • [5] Automatic localization of the fetal cerebellum on 3D ultrasound volumes
    Liu, Xinyu
    Yu, Jinhua
    Wang, Yuanyuan
    Chen, Ping
    MEDICAL PHYSICS, 2013, 40 (11)
  • [6] Automatic needle segmentation in 3D ultrasound images
    Ding, MY
    Cardinal, HN
    Guan, WG
    Fenster, A
    MEDICAL IMAGING 2002: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2002, 4681 : 65 - 76
  • [7] SEGMENTATION OF FETAL ENVELOPE FROM 3D ULTRASOUND IMAGES BASED ON PIXEL INTENSITY STATISTICAL DISTRIBUTION AND SHAPE PRIORS
    Dahdouh, Sonia
    Serrurier, Antoine
    Grange, Gilles
    Angelini, Elsa D.
    Bloch, Isabelle
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1026 - 1029
  • [8] Automatic 3D lesion segmentation on breast ultrasound images
    Kuo, Hsien-Chi
    Giger, Maryellen L.
    Reiser, Ingrid
    Drukker, Karen
    Edwards, Alexandra
    Sennett, Charlene A.
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [9] Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior
    Yang, Xiaofeng
    Schuster, David
    Master, Viraj
    Nieh, Peter
    Fenster, Aaron
    Fei, Baowei
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [10] Segmentation of the Common Carotid Artery with Active Shape Models from 3D Ultrasound Images
    Yang, Xin
    Jin, Jiaoying
    He, Wanji
    Ming Yuchi
    Ding, Mingyue
    MEDICAL IMAGING 2012: COMPUTER-AIDED DIAGNOSIS, 2012, 8315