3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images

被引:0
|
作者
Velasquez-Rodriguez, Gustavo A. R. [1 ]
Fanti-Gutierrez, Zian [2 ]
Torres, Fabian [3 ]
Medina-Banuelos, Veronica [4 ]
Escalante-Ramirez, Boris [5 ]
Marin, Lisbeth Camargo [6 ]
Huerta, Mario Guzman [6 ]
Cosio, Fernando Arambula [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Postgrad Program Elect Engn, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad Univ, Mexico City 04510, Mexico
[6] Natl Inst Perinatol, Dept Translat Med, Mexico City 11000, Mexico
[7] Univ Nacl Autonoma Mexico, Unidad Acad IIMAS Yucatan, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Merida 97205, Yucatan, Mexico
关键词
3D segmentation of the cerebellum; Spherical harmonics; Point distribution models; CLASSIFICATION;
D O I
10.1007/s11760-024-03615-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cerebellum is an important structure to determine fetal development because its volume has a high correlation with gestational age. Manual annotation of the cerebellum in 3D ultrasound images (to measure the cerebellar volume) requires highly trained experts to perform a time-consuming task. To assist in this task, we developed a totally automatic system for the 3D segmentation of the cerebellum in ultrasound images of the fetal brain, using a 3D Point Distribution Model (PDM) obtained from another statistical shape model based on a spherical harmonics (SPHARMs) representation, which provides a very efficient basis for the construction of statistical shape models of 3D organs with a spherical topology. Our PDM of the fetal cerebellum was automatically adjusted with the optimization of an objective function based on gray level voxel profiles, using a genetic algorithm. An automatic initialization and plane selection scheme was also developed, based on the detection of the cerebellum on each plane by a convolutional neural network (YOLO v2). Our results of the 3D segmentation of 18 ultrasound volumes of the fetal brain are: Dice coefficient of 0.83 +/- 0.10 and Hausdorff distance of 3.61 +/- 0.83 mm. The methods reported show potential to successfully assist the experts in the assessment of fetal growth in ultrasound volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Automatic generation of 3D statistical shape models with optimal landmark distributions
    Heimann, T.
    Wolf, I.
    Meinzer, H.-P
    METHODS OF INFORMATION IN MEDICINE, 2007, 46 (03) : 275 - 281
  • [32] Automatic 3D segmentation of intravascular ultrasound images using region and contour information
    Cardinal, MHR
    Meunier, J
    Soulez, G
    Maurice, RL
    Thérasse, T
    Cloutier, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 319 - 326
  • [33] Automatic Segmentation of Antenatal 3-D Ultrasound Images
    Anquez, Jeremie
    Angelini, Elsa D.
    Grange, Gilles
    Bloch, Isabelle
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (05) : 1388 - 1400
  • [34] Volume quantization of the mouse cerebellum by semi-automatic 3D segmentation of Magnetic Resonance images
    Sijbers, J
    VanderLinden, A
    Scheunders, P
    VanAudekerke, J
    VanDyck, D
    Raman, E
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 553 - 560
  • [35] Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models
    Neubert, A.
    Fripp, J.
    Engstrom, C.
    Schwarz, R.
    Lauer, L.
    Salvado, O.
    Crozier, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (24): : 8357 - 8376
  • [36] Automatic 3D Aorta Segmentation in CT Images
    Duan, Xiaojie
    Zhang, Meisong
    Wang, Jianming
    Chen, Qingliang
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 49 - 54
  • [37] Reparameterising 3D Statistical Shape Models
    Wang, Haoyang
    Zafeiriou, Stefanos
    2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 477 - 481
  • [38] Multiscale segmentation of the aorta in 3D ultrasound images
    Krissian, K
    Ellsmere, J
    Vosburgh, K
    Kikinis, R
    Westin, CF
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 638 - 641
  • [39] 3D segmentation of breast tumor in ultrasound images
    Kwak, JI
    Jung, MN
    Kim, SH
    Kim, NC
    MEDICAL IMAGING 2003: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2003, 5035 : 193 - 200
  • [40] Automatic Initialization of 3D Active Models for Lobe Segmentation in Thorax CT Images
    Cavalcante, Tarique da Silveira
    Cortez, Paulo C.
    Ribeiro, Alyson B. N.
    Neto, Edson C.
    Rodrigues, Valberto E.
    de Almeida, Thomaz Maia
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 69 - 76