Segmentation of fetal 3d ultrasound based on statistical prior and deformable model

被引:9
|
作者
Anquez, Jeremie [1 ]
Angelini, Elsa D. [1 ]
Bloch, Isabelle [1 ]
机构
[1] LTCI CNRS, Inst Telecom, TELECOM ParisTech, Paris, France
关键词
3D ultrasound; segmentation; deformable model; statistical prior;
D O I
10.1109/ISBI.2008.4540921
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A statistical variational framework is proposed for the fetus and uterus segmentation in ultrasound images. The Rayleigh and exponential distributions are used to model the pixel intensity. An energy is derived to perform an optimal partition of the 3D data into two classes corresponding to these two distributions, in a Bayesian MAP framework. Some numerical difficulties are raised by the combination of heterogeneous distributions in a variational level-set formulation, as discussed in the paper. Results on simulated and real data are presented and show that assuming different distributions provides better results than with the sole Rayleigh distribution.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [31] A statistical assembled model for segmentation of entire 3D vasculature
    Feng, Jun
    Ip, Horace H. S.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 95 - +
  • [32] Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound Images
    Li, Hao
    Oguz, Baris
    Arenas, Gabriel
    Yao, Xing
    Wang, Jiacheng
    Pouch, Alison
    Byram, Brett
    Schwartz, Nadav
    Oguz, Ipek
    SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2024, 2025, 15186 : 132 - 142
  • [33] Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning
    Hesse, Linde S.
    Aliasi, Moska
    Moser, Felipe
    Haak, Monique C.
    Xie, Weidi
    Jenkinson, Mark
    Namburete, Ana I. L.
    NEUROIMAGE, 2022, 254
  • [34] Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method
    Zhan, YQ
    Shen, DG
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (03) : 256 - 272
  • [35] Model-Based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning
    Cuadra, M. Bach
    Gorthi, S.
    Karahanoglu, F. I.
    Paquier, B.
    Pica, A.
    Do, H. P.
    Balmer, A.
    Munier, F.
    Thiran, J. -Ph.
    COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING: RECENT TRENDS, 2011, 19 : 247 - 263
  • [36] SEGMENTATION OF 3D OBJECT IN VOLUME DATASET USING ACTIVE DEFORMABLE MODEL
    Park, Jonghyun
    Cho, Wanhyun
    Park, Soonyoung
    Kim, Sunworl
    Kim, Soohyung
    Ahn, Gukdong
    Lee, Myungeun
    Lee, Gueesang
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4121 - 4124
  • [37] 2D and 3D shape based segmentation using deformable models
    El-Baz, A
    Yuksel, SE
    Shi, HJ
    Farag, AA
    El-Ghar, MA
    Eldiasty, T
    Ghoneim, MA
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 821 - 829
  • [38] Deep Learning based Segmentation for Assessment of Fractional Limb Volume in 3D Fetal Ultrasound Imaging
    Pardasani, Rohit
    Auchar, Hrithik
    Goel, Mansi
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [39] Segmentation of embryonic and fetal 3D ultrasound images based on pixel intensity distributions and shape priors
    Dahdouh, Sonia
    Angelini, Elsa D.
    Grange, Gilles
    Bloch, Isabelle
    MEDICAL IMAGE ANALYSIS, 2015, 24 (01) : 255 - 268
  • [40] Construction of 3D human distal femoral surface models using a 3D statistical deformable model
    Zhu, Zhonglin
    Li, Guoan
    JOURNAL OF BIOMECHANICS, 2011, 44 (13) : 2362 - 2368