pyCLAMs: An integrated Python']Python toolkit for classifiability analysis

被引:0
|
作者
Zhang, Yinsheng [1 ]
Wang, Haiyan [1 ]
Cheng, Yongbo [2 ]
Qin, Xiaolin [3 ]
机构
[1] Zhejiang Gongshang Univ, Sch Management & Business, Hangzhou 310018, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Management Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Classifiability analysis; Discriminative task; !text type='Python']Python[!/text; INFORMATION; COMPLEXITY;
D O I
10.1016/j.softx.2022.101007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In data-driven discriminative tasks, classifiability analysis is an often-neglected and implicit step. It answers the fundamental question: does the dataset possess sufficient between-class differences? To measure the dataset's classifiability degree, we develop pyCLAMs (python package for CLassifiabilty Analysis Metrics). pyCLAMs has integrated existing classifiability complexity metrics (e.g., Fisher discriminant ratio, overlapping region volume, distribution topology) and extends more metrics/statistics, such as BER (Bayes error rate, irreducible error), ES (effect size), Person's r, Spearman's rho, Kendall's tau, IG (information gain, mutual information), ANOVA (Analysis of Variance), MANOVA (Multivariate ANOVA), MWW (Mann-Whitney-Wilcoxon test), KS (Kolmogorov-Smirnov test), etc. The current version of pyCLAMs supports 68 metrics. We recommend researchers use pyCLAMs for a precursory assessment for their classification tasks. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] KinZ an Azure Kinect toolkit for Python']Python and Matlab
    Terven, Juan R.
    Cordova-Esparza, Diana M.
    SCIENCE OF COMPUTER PROGRAMMING, 2021, 211
  • [22] PyAEM: A Python']Python toolkit for aquatic ecosystem modelling
    Huang, Jiacong
    Kong, Ming
    Zhang, Chen
    Cui, Zhen
    Tian, Feng
    Gao, Junfeng
    ECOLOGICAL INFORMATICS, 2020, 60
  • [23] PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python']Python
    Ding, Jianqiang
    Wu, Taoran
    Liang, Zhen
    Xue, Bai
    FORMAL METHODS, PT II, FM 2024, 2025, 14934 : 140 - 157
  • [24] PyICLab: An integrated Python']Python-based toolkit for in-silico simulations of ion chromatography
    Zhang, Kai
    Qian, Yule
    Lou, Chaoyan
    Ye, Mingli
    Zhu, Yan
    TALANTA, 2025, 282
  • [25] pyCSEP: A Python']Python Toolkit for Earthquake Forecast Developers
    Savran, William H.
    Bayona, Jose A.
    Iturrieta, Pablo
    Asim, Khawaja M.
    Bao, Han
    Bayliss, Kirsty
    Herrmann, Marcus
    Schorlemmer, Danijel
    Maechling, Philip J.
    Werner, Maximilian J.
    SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (05) : 2858 - 2870
  • [26] PySAT: A Python']Python Toolkit for Prototyping with SAT Oracles
    Ignatiev, Alexey
    Morgado, Antonio
    Marques-Silva, Joao
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2018, 2018, 10929 : 428 - 437
  • [27] PyToBI: a Toolkit for ToBI Labeling under Python']Python
    Dominguez, Monica
    Rohrer, Patrick Louis
    Soler-Company, Juan
    INTERSPEECH 2019, 2019, : 3675 - 3676
  • [28] Pybel: a Python']Python wrapper for the OpenBabel cheminformatics toolkit
    O'Boyle, Noel M.
    Morley, Chris
    Hutchison, Geoffrey R.
    CHEMISTRY CENTRAL JOURNAL, 2008, 2 (1)
  • [29] Eelbrain, a Python']Python toolkit for time-continuous analysis with temporal response functions
    Brodbeck, Christian
    Das, Proloy
    Gillis, Marlies
    Kulasingham, Joshua P.
    Bhattasali, Shohini
    Gaston, Phoebe
    Resnik, Philip
    Simon, Jonathan Z.
    ELIFE, 2023, 12 : 1 - 41
  • [30] nbodykit: A Python']Python Toolkit for Cosmology Simulations and Data Analysis on Parallel HPC Systems
    Hand, Nick
    Feng, Yu
    PROCEEDINGS OF PYHPC'17: 7TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2017,