pyCLAMs: An integrated Python']Python toolkit for classifiability analysis

被引:0
|
作者
Zhang, Yinsheng [1 ]
Wang, Haiyan [1 ]
Cheng, Yongbo [2 ]
Qin, Xiaolin [3 ]
机构
[1] Zhejiang Gongshang Univ, Sch Management & Business, Hangzhou 310018, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Management Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Classifiability analysis; Discriminative task; !text type='Python']Python[!/text; INFORMATION; COMPLEXITY;
D O I
10.1016/j.softx.2022.101007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In data-driven discriminative tasks, classifiability analysis is an often-neglected and implicit step. It answers the fundamental question: does the dataset possess sufficient between-class differences? To measure the dataset's classifiability degree, we develop pyCLAMs (python package for CLassifiabilty Analysis Metrics). pyCLAMs has integrated existing classifiability complexity metrics (e.g., Fisher discriminant ratio, overlapping region volume, distribution topology) and extends more metrics/statistics, such as BER (Bayes error rate, irreducible error), ES (effect size), Person's r, Spearman's rho, Kendall's tau, IG (information gain, mutual information), ANOVA (Analysis of Variance), MANOVA (Multivariate ANOVA), MWW (Mann-Whitney-Wilcoxon test), KS (Kolmogorov-Smirnov test), etc. The current version of pyCLAMs supports 68 metrics. We recommend researchers use pyCLAMs for a precursory assessment for their classification tasks. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] pgmpy: A Python']Python Toolkit for Bayesian Networks
    Ankan, Ankur
    Textor, Johannes
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [12] ABLkit: a Python']Python toolkit for abductive learning
    Huang, Yu-Xuan
    Hu, Wen-Chao
    Gao, En-Hao
    Jiang, Yuan
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (06)
  • [13] XCast: A python']python climate forecasting toolkit
    Hall, Kyle Joseph Chen
    Acharya, Nachiketa
    FRONTIERS IN CLIMATE, 2022, 4
  • [14] stk: A Python']Python Toolkit for Supramolecular Assembly
    Turcani, Lukas
    Berardo, Enrico
    Jelfs, Kim E.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (23) : 1931 - 1942
  • [15] pyGlobus:: a Python']Python interface to the Globus Toolkit™
    Jackson, KR
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2002, 14 (13-15): : 1075 - 1083
  • [16] Pygmtools: A Python']Python Graph Matching Toolkit
    Wang, Runzhong
    Guo, Ziao
    Pan, Wenzheng
    Ma, Jiale
    Zhang, Yikai
    Yang, Nan
    Liu, Qi
    Zhang, Hanxue
    Wei, Longxuan
    Liu, Chang
    Jiang, Zetian
    Yang, Xiaokang
    Yan, Junchi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 7
  • [17] SeisAug: A data augmentation python']python toolkit
    Pragnath, D.
    Srijayanthi, G.
    Kumar, Santosh
    Chopra, Sumer
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [18] TAT-HUM: Trajectory analysis toolkit for human movements in Python']Python
    Wang, Xiaoye Michael
    Welsh, Timothy N.
    BEHAVIOR RESEARCH METHODS, 2024, 56 (04) : 4103 - 4129
  • [19] PyVecContour: A Python']Python toolkit for vectorized isosurface mapping
    Ma, Jinfeng
    Zheng, Hua
    Li, Ruonan
    Rao, Kaifeng
    Yang, Yanzheng
    Li, Weifeng
    SOFTWAREX, 2023, 21
  • [20] Chameleon: A Python']Python Workflow Toolkit for Feature Selection
    Thilakeswaran, Diviya
    McManis, Simon
    Wang, X. Rosalind
    DATA MINING, AUSDM 2021, 2021, 1504 : 121 - 135