pyCLAMs: An integrated Python']Python toolkit for classifiability analysis

被引:0
|
作者
Zhang, Yinsheng [1 ]
Wang, Haiyan [1 ]
Cheng, Yongbo [2 ]
Qin, Xiaolin [3 ]
机构
[1] Zhejiang Gongshang Univ, Sch Management & Business, Hangzhou 310018, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Management Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Classifiability analysis; Discriminative task; !text type='Python']Python[!/text; INFORMATION; COMPLEXITY;
D O I
10.1016/j.softx.2022.101007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In data-driven discriminative tasks, classifiability analysis is an often-neglected and implicit step. It answers the fundamental question: does the dataset possess sufficient between-class differences? To measure the dataset's classifiability degree, we develop pyCLAMs (python package for CLassifiabilty Analysis Metrics). pyCLAMs has integrated existing classifiability complexity metrics (e.g., Fisher discriminant ratio, overlapping region volume, distribution topology) and extends more metrics/statistics, such as BER (Bayes error rate, irreducible error), ES (effect size), Person's r, Spearman's rho, Kendall's tau, IG (information gain, mutual information), ANOVA (Analysis of Variance), MANOVA (Multivariate ANOVA), MWW (Mann-Whitney-Wilcoxon test), KS (Kolmogorov-Smirnov test), etc. The current version of pyCLAMs supports 68 metrics. We recommend researchers use pyCLAMs for a precursory assessment for their classification tasks. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] FlowKit: A Python']Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows
    White, Scott
    Quinn, John
    Enzor, Jennifer
    Staats, Janet
    Mosier, Sarah M.
    Almarode, James
    Denny, Thomas N.
    Weinhold, Kent J.
    Ferrari, Guido
    Chan, Cliburn
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [2] Python']Python toolkit for DNA geometry analysis and modeling
    Armeev, G. A.
    Sukhanova, I. A.
    Shaytan, A. K.
    FEBS OPEN BIO, 2019, 9 : 150 - 150
  • [3] PYSAT: Python']Python Satellite Data Analysis Toolkit
    Stoneback, R. A.
    Burrell, A. G.
    Klenzing, J.
    Depew, M. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (06) : 5271 - 5283
  • [4] Tsundoku: A Python']Python toolkit for social network analysis
    Graells-Garrido, Eduardo
    Garcia, Nicolas
    Carvallo, Andres
    SOFTWAREX, 2025, 29
  • [5] pyWitness 1.0: A python']python eyewitness identification analysis toolkit
    Mickes, Laura
    Seale-Carlisle, Travis M.
    Chen, Xueqing
    Boogert, Stewart
    BEHAVIOR RESEARCH METHODS, 2024, 56 (03) : 1533 - 1550
  • [6] LaNCoA: A Python']Python Toolkit for Language Networks Construction and Analysis
    Margan, Domagoj
    Mestrovic, Ana
    2015 8TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2015, : 1628 - 1633
  • [7] LiPyphilic: A Python']Python Toolkit for the Analysis of Lipid Membrane Simulations
    Smith, Paul
    Lorenz, Christian D.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (09) : 5907 - 5919
  • [8] Python']Python's PyQt toolkit
    Rempt, B
    DR DOBBS JOURNAL, 2001, 26 (01): : 88 - +
  • [9] A Python']Python Toolkit for Universal Transliteration
    Qian, Ting
    Hollingshead, Kristy
    Yoon, Su-youn
    Kim, Kyoung-young
    Sproat, Richard
    LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 2897 - 2901
  • [10] CIViCpy: A Python']Python Software Development and Analysis Toolkit for the CIViC Knowledgebase
    Wagner, Alex H.
    Kiwala, Susanna
    Coffman, Adam C.
    McMichael, Joshua F.
    Cotto, Kelsy C.
    Mooney, Thomas B.
    Barnell, Erica K.
    Krysiak, Kilannin
    Danos, Arpad M.
    Walker, Jason
    Griffith, Obi L.
    Griffith, Malachi
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 245 - 253