A theoretical model for the HgCdTe electron avalanche photodiode

被引:28
|
作者
Kinch, Michael A. [1 ]
机构
[1] DRS Infrared Technol, Dallas, TX 75243 USA
关键词
HgCdTe; electron avalanche photodiode; optical phonon mean free path; impact ionization;
D O I
10.1007/s11664-008-0439-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A ballistic model is presented for electron avalanche multiplication in the conduction band of HgCdTe, based upon the concept of an optical phonon limited mean free path for the electron, lambda (e). The model predicts avalanche gain as a function of applied bias voltage V, and a threshold voltage for impact ionization V(th). Impact ionization probabilities are calculated analytically using a simplified band structure model for HgCdTe and used to estimate values for the threshold energy for impact ionization. A simple ballistic model is developed to correlate the relationship between electron energy and applied bias voltage, based upon the relevant electron scattering mechanisms in HgCdTe. A comparison with published gain-voltage data suggests that the process is limited by optical phonon scattering, and the relationship between electron energy and applied bias voltage, for a uniform electric field F = V/W, across a diode depletion width W, is given by E = alpha(E)V, where alpha(E) = [lambda(e)(E)/W]. For high electron energies lambda (e)(E) is independent of E and alpha(E) depends only on the dielectric parameters of the material. Using this simple model it is easy to predict electron avalanche gain versus voltage for any parametric combination of diode geometry, bandgap, and operating temperature.
引用
收藏
页码:1453 / 1459
页数:7
相关论文
共 50 条
  • [31] Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo UK
    Zemaityte, Egle
    Owton, Dan
    Maxey, Chris
    Gordon, Jim
    Isgar, Vincent
    Hipwood, Les
    Hicks, Matthew
    Barnes, Keith
    Thorne, Peter
    Baker, Ian
    OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING VIII, 2022, 12183
  • [32] HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths
    Sun, Xiaoli
    Abshire, James B.
    Beck, Jeffrey D.
    Mitra, Pradip
    Reiff, Kirk
    Yang, Guangning
    OPTICS EXPRESS, 2017, 25 (14): : 16589 - 16602
  • [33] THEORETICAL CHARACTERISATION OF A SUPERLATTICE AVALANCHE PHOTODIODE.
    Pal, B.B.
    Chakrabarti, P.
    Applied Physics A: Solids and Surfaces, 1987, A42 (03): : 173 - 177
  • [34] Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications
    Sun, Xiaoli
    Abshire, James B.
    Lauenstein, Jean-Marie
    Sullivan, William, III
    Beck, Jeff
    Hubbs, John E.
    INFRARED TECHNOLOGY AND APPLICATIONS XLIV, 2018, 10624
  • [35] High Performance of Midwave Infrared HgCdTe e-Avalanche Photodiode Detector
    Singh, Anand
    Shukla, A. K.
    Pal, Ravinder
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (04) : 360 - 362
  • [36] Modeling of a Back-Illuminated HgCdTe MWIR Avalanche Photodiode with Alloy Gradients
    Storebo, A. K.
    Brudevoll, T.
    19TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON' 19), 2015, 647
  • [37] Evaluation and optimization of NIR HgCdTe Avalanche Photodiode Arrays for Adaptive Optics and Interferometry
    Finger, Gert
    Baker, Ian
    Alvarez, Domingo
    Ives, Derek
    Mehrgan, Leander
    Meyer, Manfred
    Stegmeier, Joerg
    Thorne, Peter
    Weller, Harald J.
    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY V, 2012, 8453
  • [38] Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode
    Beck, Jeffrey D.
    Kinch, Mike
    Sun, Xiaoli
    OPTICAL ENGINEERING, 2014, 53 (08)
  • [39] Research on noise model of avalanche photodiode
    Wan Junli
    Jiang Binghua
    Luo Haiyue
    Tang Liangshu
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3476 - 3479
  • [40] Analysis of the mechanisms of electron recombination in HgCdTe infrared photodiode
    Cui, Haoyang
    Zeng, Jundong
    Tang, Naiyun
    Tang, Zhong
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (07) : 629 - 634