A theoretical model for the HgCdTe electron avalanche photodiode

被引:28
|
作者
Kinch, Michael A. [1 ]
机构
[1] DRS Infrared Technol, Dallas, TX 75243 USA
关键词
HgCdTe; electron avalanche photodiode; optical phonon mean free path; impact ionization;
D O I
10.1007/s11664-008-0439-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A ballistic model is presented for electron avalanche multiplication in the conduction band of HgCdTe, based upon the concept of an optical phonon limited mean free path for the electron, lambda (e). The model predicts avalanche gain as a function of applied bias voltage V, and a threshold voltage for impact ionization V(th). Impact ionization probabilities are calculated analytically using a simplified band structure model for HgCdTe and used to estimate values for the threshold energy for impact ionization. A simple ballistic model is developed to correlate the relationship between electron energy and applied bias voltage, based upon the relevant electron scattering mechanisms in HgCdTe. A comparison with published gain-voltage data suggests that the process is limited by optical phonon scattering, and the relationship between electron energy and applied bias voltage, for a uniform electric field F = V/W, across a diode depletion width W, is given by E = alpha(E)V, where alpha(E) = [lambda(e)(E)/W]. For high electron energies lambda (e)(E) is independent of E and alpha(E) depends only on the dielectric parameters of the material. Using this simple model it is easy to predict electron avalanche gain versus voltage for any parametric combination of diode geometry, bandgap, and operating temperature.
引用
收藏
页码:1453 / 1459
页数:7
相关论文
共 50 条
  • [21] Proton Radiation Effects on HgCdTe Avalanche Photodiode Detectors
    Sun, Xiaoli
    Abshire, James B.
    Lauenstein, Jean-Marie
    Babu, Sachidananda R.
    Beck, Jeff D.
    Sullivan, William W., III
    Hubbs, John E.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (01) : 27 - 35
  • [22] Probabilistic model of the process of electron multiplication in an avalanche photodiode
    Apanasovich, V.V.
    Pashkevich, V.V.
    Journal of Communications Technology and Electronics, 1995, 40 (15): : 57 - 62
  • [23] HgCdTe electron avalanche photodiodes
    M. A. Kinch
    J. D. Beck
    C. -F. Wan
    F. Ma
    J. Campbell
    Journal of Electronic Materials, 2004, 33 : 630 - 639
  • [24] HgCdTe electron avalanche photodiodes
    Kinch, MA
    Beck, JD
    Wan, CF
    Ma, F
    Campbell, J
    JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 630 - 639
  • [25] Gated IR imaging with 128x128 HgCdTe electron avalanche photodiode FPA
    Beck, Jeff
    Woodall, Milton
    Scritchfield, Richard
    Ohlson, Martha
    Wood, Lewis
    Mitra, Pradip
    Robinson, Jim
    INFRARED TECHNOLOGY AND APPLICATIONS XXXIII, 2007, 6542
  • [26] A MODEL OF AVALANCHE PHOTODIODE
    BIARD, JR
    SHAUNFIELD, WN
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1967, ED14 (05) : 233 - +
  • [27] Effects of proton irradiation on a SAPHIRA HgCdTe avalanche photodiode array
    Sun, Xiaoli
    Lu, Wei
    Yang, Guangning
    Babu, Sachidananda
    Lauenstein, Jean-Marie
    Le Roch, Alexandre
    Baker, Ian
    INFRARED TECHNOLOGY AND APPLICATIONS XLVIII, 2022, 12107
  • [28] Dark current mechanism of medium wave HgCdTe avalanche photodiode
    Yang, Liao
    Chen, Lu
    Guo, Huijun
    Yang, Dan
    Shen, Chuan
    Chen, Honglei
    Lin, Chun
    Ding, Ruijun
    He, Li
    24TH NATIONAL LASER CONFERENCE & FIFTEENTH NATIONAL CONFERENCE ON LASER TECHNOLOGY AND OPTOELECTRONICS, 2020, 11717
  • [29] MBE growth HgCdTe avalanche photodiode based on PIN structure
    Gu Ren-Jie
    Shen Chuan
    Wang Wei-Qiang
    Fu Xiang-Liang
    Guo Yu-Ying
    Chen Lu
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2013, 32 (02) : 136 - 140
  • [30] THEORETICAL CHARACTERIZATION OF A SUPERLATTICE AVALANCHE PHOTODIODE
    PAL, BB
    CHAKRABARTI, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1987, 42 (03): : 173 - 177