A theoretical model for the HgCdTe electron avalanche photodiode

被引:28
|
作者
Kinch, Michael A. [1 ]
机构
[1] DRS Infrared Technol, Dallas, TX 75243 USA
关键词
HgCdTe; electron avalanche photodiode; optical phonon mean free path; impact ionization;
D O I
10.1007/s11664-008-0439-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A ballistic model is presented for electron avalanche multiplication in the conduction band of HgCdTe, based upon the concept of an optical phonon limited mean free path for the electron, lambda (e). The model predicts avalanche gain as a function of applied bias voltage V, and a threshold voltage for impact ionization V(th). Impact ionization probabilities are calculated analytically using a simplified band structure model for HgCdTe and used to estimate values for the threshold energy for impact ionization. A simple ballistic model is developed to correlate the relationship between electron energy and applied bias voltage, based upon the relevant electron scattering mechanisms in HgCdTe. A comparison with published gain-voltage data suggests that the process is limited by optical phonon scattering, and the relationship between electron energy and applied bias voltage, for a uniform electric field F = V/W, across a diode depletion width W, is given by E = alpha(E)V, where alpha(E) = [lambda(e)(E)/W]. For high electron energies lambda (e)(E) is independent of E and alpha(E) depends only on the dielectric parameters of the material. Using this simple model it is easy to predict electron avalanche gain versus voltage for any parametric combination of diode geometry, bandgap, and operating temperature.
引用
收藏
页码:1453 / 1459
页数:7
相关论文
共 50 条
  • [1] A Theoretical Model for the HgCdTe Electron Avalanche Photodiode
    Michael A. Kinch
    Journal of Electronic Materials, 2008, 37 : 1453 - 1459
  • [2] The HgCdTe electron avalanche photodiode
    Beck, JD
    Wan, CF
    Kinch, MA
    Robinson, JE
    Ma, F
    Campbell, JC
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 849 - 850
  • [3] The HgCdTe electron avalanche photodiode
    J. Beck
    C. Wan
    M. Kinch
    J. Robinson
    P. Mitra
    R. Scritchfield
    F. Ma
    J. Campbell
    Journal of Electronic Materials, 2006, 35 : 1166 - 1173
  • [4] The HgCdTe electron avalanche photodiode
    Beck, J.
    Wan, C.
    Kinch, M.
    Robinson, J.
    Mitra, P.
    Scritchfield, R.
    Ma, F.
    Campbell, J.
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) : 1166 - 1173
  • [5] The HgCdTe electron avalanche photodiode
    Beck, J
    Wan, C
    Kinch, M
    Robinson, J
    Mitra, P
    Scritchfield, R
    Ma, F
    Campbell, J
    INFRARED DETECTOR MATERIALS AND DEVICES, 2004, 5564 : 44 - 53
  • [6] Improved local field model for HgCdTe electron avalanche photodiode
    Cheng Yushun
    Chen Lu
    Guo Huijun
    Lin Chun
    He Li
    INFRARED PHYSICS & TECHNOLOGY, 2019, 101 : 156 - 161
  • [7] Performance and Modeling of the MWIR HgCdTe Electron Avalanche Photodiode
    Jeffrey Beck
    Richard Scritchfield
    Billy Sullivan
    Jamie Teherani
    Chang-Feng Wan
    Mike Kinch
    Martha Ohlson
    Mark Skokan
    Lewis Wood
    Pradip Mitra
    Mike Goodwin
    Jim Robinson
    Journal of Electronic Materials, 2009, 38 : 1579 - 1592
  • [8] Performance and Modeling of the MWIR HgCdTe Electron Avalanche Photodiode
    Beck, Jeffrey
    Scritchfield, Richard
    Sullivan, Billy
    Teherani, Jamie
    Wan, Chang-Feng
    Kinch, Mike
    Ohlson, Martha
    Skokan, Mark
    Wood, Lewis
    Mitra, Pradip
    Goodwin, Mike
    Robinson, Jim
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (08) : 1579 - 1592
  • [9] HgCdTe avalanche photodiode FPA
    Li Hao
    Lin Chun
    Zhou Song-Min
    Guo Hui-Jun
    Wang Xi
    Chen Hong-Lei
    Wei Yan-Feng
    Chen Lu
    Ding Rui-Jun
    He Li
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2019, 38 (05) : 587 - 590
  • [10] Gated IR Imaging with 128 × 128 HgCdTe Electron Avalanche Photodiode FPA
    Jeff Beck
    Milton Woodall
    Richard Scritchfield
    Martha Ohlson
    Lewis Wood
    Pradip Mitra
    Jim Robinson
    Journal of Electronic Materials, 2008, 37 : 1334 - 1343