On variation principles of nonholonomic dynamics of arbitrary orders

被引:0
|
作者
Rodionov, AI [1 ]
Kim, VF [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia
来源
Korus 2004, Vol 3, Proceedings | 2004年
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of Classical Mechanics the differential Principles and integral variation Principles, relevant to them, for nonholonomic dynamics of arbitrary orders are constructed. These Principles describes a motion of mechanical systems with ideal by Gartung - Dobronravov holonomic and nonholonomic constraints of arbitrary order. They can also be used for investigation of dynamic electromechanical and mechatronic systems with incomplete gradient program of a motion.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 50 条
  • [31] Bell polynomials of arbitrary (fractional) orders
    El-Sayed, AMA
    Rida, SZ
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 106 (01) : 51 - 62
  • [32] CALCULATION OF MULTILOOP DIAGRAMS OF ARBITRARY ORDERS
    USYUKINA, NI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 87 (03) : 627 - 632
  • [33] The HMRAC scheme with arbitrary relative orders
    Wu, ZQ
    Xu, SF
    Yue, D
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 3069 - 3072
  • [34] Approximations of arbitrary relations by partial orders
    Janicki, Ryszard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 98 : 177 - 195
  • [35] GENERALIZATION OF THE GAUSS PRINCIPLE ON THE CASE OF NONHOLONOMIC SYSTEMS OF HIGHER ORDERS
    POLIAKHOV, NN
    ZEGZHDA, SA
    IUSHKOV, MP
    DOKLADY AKADEMII NAUK SSSR, 1983, 269 (06): : 1328 - 1330
  • [36] Nonholonomic kinematics and dynamics of the sphericle
    Camicia, C
    Conticelli, F
    Bicchi, A
    2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 805 - 810
  • [37] Nonholonomic versus vakonomic dynamics
    Zampieri, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (02) : 335 - 347
  • [38] ON THE DISCRETIZATION OF NONHOLONOMIC DYNAMICS IN Rn
    Jimenez, Fernando
    Scheurle, Juergen
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01): : 43 - 80
  • [39] Creep dynamics of nonholonomic systems
    Wang, JC
    Huang, HP
    1996 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, PROCEEDINGS, VOLS 1-4, 1996, : 3452 - 3457
  • [40] ON THE HISTORY OF THE DEVELOPMENT OF THE NONHOLONOMIC DYNAMICS
    Borisov, A. V.
    Mamaev, I. S.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 43 - 47