On variation principles of nonholonomic dynamics of arbitrary orders

被引:0
|
作者
Rodionov, AI [1 ]
Kim, VF [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia
来源
Korus 2004, Vol 3, Proceedings | 2004年
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of Classical Mechanics the differential Principles and integral variation Principles, relevant to them, for nonholonomic dynamics of arbitrary orders are constructed. These Principles describes a motion of mechanical systems with ideal by Gartung - Dobronravov holonomic and nonholonomic constraints of arbitrary order. They can also be used for investigation of dynamic electromechanical and mechatronic systems with incomplete gradient program of a motion.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 50 条
  • [21] DYNAMICS OF NONHOLONOMIC SYSTEMS
    MLADENOVA, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (03): : 199 - 205
  • [22] Nonholonomic Multibody Dynamics
    Gerald Kielau
    Peter Maißer
    Multibody System Dynamics, 2003, 9 : 213 - 236
  • [23] On the dynamics of nonholonomic systems
    Ramirez, Rafael
    Sadovskaia, Natalia
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 60 (03) : 427 - 451
  • [24] On the geometry of nonholonomic dynamics
    School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0405, United States
    J Appl Mech Trans ASME, 2 (552):
  • [25] Simulating nonholonomic dynamics
    Kobilarov M.
    de Diego D.M.
    Ferraro S.
    SeMA Journal, 2010, 50 (1): : 61 - 81
  • [26] On the geometry of nonholonomic dynamics
    Essen, H., 1600, ASME, New York, NY, United States (61):
  • [27] Integral principles for nonlinear nonholonomic systems
    Ghori, QK
    Ahmed, N
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 654 - 656
  • [28] Principles of Lagrange and Jacobi for nonholonomic systems
    Ghori, QK
    Ahmed, N
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (05) : 823 - 829
  • [29] Fundamental principles of Lagrangian dynamics: Mechanical systems with non-ideal, holonomic, and nonholonomic constraints
    Udwadia, FE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) : 341 - 355
  • [30] Laguerre polynomials of arbitrary (fractional) orders
    El-Sayed, AMA
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (01) : 1 - 9