BMO estimates for the p-Laplacian

被引:67
|
作者
Diening, L. [1 ]
Kaplicky, P. [2 ]
Schwarzacher, S. [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Math, D-80333 Munich, Germany
[2] Charles Univ Prague, Prague 8, Czech Republic
关键词
Elliptic systems; BMO estimates; Nonlinear Calderon-Zygmund theory; Campanato estimates; ELLIPTIC-SYSTEMS; REGULARITY; GRADIENT;
D O I
10.1016/j.na.2011.08.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove BMO estimates of the inhomogeneous p-Laplace system given by -div (|del u|(p) (2) del u) = div f. We show that f is an element of BMO implies |del u|(p-2)del u is an element of BMO, which is the limiting case of the nonlinear Calderon-Zygmund theory. This extends the work of DiBenedetto and Manfredi (1993) [2], which was restricted to the super-quadratic case p >= 2, to the full case 1 < p < infinity and even more general growth. Moreover, we prove that A(del u) inherits the Campanato and VMO regularity of f. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 50 条
  • [41] Hessian estimates for equations involving p-Laplacian via a fundamental inequality
    Dong, Hongjie
    Peng, Fa
    Zhang, Yi Ru-Ya
    Zhou, Yuan
    ADVANCES IN MATHEMATICS, 2020, 370
  • [42] Estimates at infinity for positive solutions to a class of p-Laplacian problems in RN
    Costa, David G.
    Tehrani, Hossein
    Thomas, Ralph
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 170 - 182
  • [43] Asymptotic Estimates for the p-Laplacian on Infinite Graphs with Decaying Initial Data
    Daniele Andreucci
    Anatoli F. Tedeev
    Potential Analysis, 2020, 53 : 677 - 699
  • [44] Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values
    Ling Mi
    Boundary Value Problems, 2019
  • [45] Variations on the p-Laplacian
    Kawohl, Bernd
    NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, 2011, 540 : 35 - 46
  • [46] Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian
    Avelin, Benny
    Capogna, Luca
    Citti, Giovanna
    Nystrom, Kaj
    ADVANCES IN MATHEMATICS, 2014, 257 : 25 - 65
  • [47] Best Estimates of Weighted Eigenvalues of One-dimensional p-Laplacian
    晏平
    章梅荣
    NortheasternMathematicalJournal, 2003, (01) : 39 - 50
  • [48] Estimates for Robin p-Laplacian eigenvalues of convex sets with prescribed perimeter
    Amato, Vincenzo
    Gentile, Andrea
    Masiello, Alba Lia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (02)
  • [49] Mckean-Type Estimates for the First Eigenvalue of the p-Laplacian and (p, q)-Laplacian Operators on Finsler Manifolds
    Hajiaghasi, Sakineh
    Azami, Shahroud
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 358 - 366
  • [50] On the eigenvectors of p-Laplacian
    Luo, Dijun
    Huang, Heng
    Ding, Chris
    Nie, Feiping
    MACHINE LEARNING, 2010, 81 (01) : 37 - 51