BMO estimates for the p-Laplacian

被引:67
|
作者
Diening, L. [1 ]
Kaplicky, P. [2 ]
Schwarzacher, S. [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Math, D-80333 Munich, Germany
[2] Charles Univ Prague, Prague 8, Czech Republic
关键词
Elliptic systems; BMO estimates; Nonlinear Calderon-Zygmund theory; Campanato estimates; ELLIPTIC-SYSTEMS; REGULARITY; GRADIENT;
D O I
10.1016/j.na.2011.08.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove BMO estimates of the inhomogeneous p-Laplace system given by -div (|del u|(p) (2) del u) = div f. We show that f is an element of BMO implies |del u|(p-2)del u is an element of BMO, which is the limiting case of the nonlinear Calderon-Zygmund theory. This extends the work of DiBenedetto and Manfredi (1993) [2], which was restricted to the super-quadratic case p >= 2, to the full case 1 < p < infinity and even more general growth. Moreover, we prove that A(del u) inherits the Campanato and VMO regularity of f. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 50 条