Automatic Positioning of Hippocampus Deformable Mesh Models in Brain MR Images Using a Weighted 3D-SIFT Technique

被引:0
|
作者
Korb, Matheus Muller [1 ]
Ferrari, Ricardo Jose [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT II | 2020年 / 12250卷
基金
巴西圣保罗研究基金会;
关键词
3D-SIFT; Keypoint registration; Deformable mesh positioning; Hippocampus segmentation; Alzheimer's Disease; MRI; ALZHEIMERS-DISEASE; SEGMENTATION;
D O I
10.1007/978-3-030-58802-1_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic hippocampus segmentationin Magnetic Resonance (MR) images is an essential step in systems for early diagnostic and monitoring treatment of Alzheimer's disease (AD). It allows quantification of the hippocampi volume and assessment of their progressive shrinkage, considered as the hallmark symptom of AD. Among several methods published in the literature for hippocampus segmentation, those using anatomical atlases and deformable mesh models are the most promising ones. Although these techniques are convenient ways to embed the shape of the models in the segmentation process, their success greatly depend on the initial positioning of the models. In this work, we propose a new keypoint deformable registration technique that uses a modification of the 3D Scale-Invariant Feature Transform (3D-SIFT) and a keypoint weighting strategy for automatic positioning of hippocampus deformable meshes in brain MR images. Using the Mann-Whitney U test to assess the results statistically, our method showed an average improvement of 11% over the exclusive use of Affine transformation, 30% over the original 3D-SIFT and 7% over the non-weighted point procedure.
引用
收藏
页码:75 / 90
页数:16
相关论文
共 50 条
  • [21] Automatic lumen and outer wall segmentation of the carotid artery using a deformable 3D model in MR angiography and vessel wall images
    Van 'T Klooster, R.
    De Koning, P. J. H.
    Dehnavi, R. Alizadeh
    Tamsma, J. T.
    De Roos, A.
    Reiber, J. H. C.
    Van der Geest, R. J.
    EUROPEAN HEART JOURNAL, 2010, 31 : 1026 - 1026
  • [22] AMNet: Adaptive multi-level network for deformable registration of 3D brain MR images
    Che, Tongtong
    Wang, Xiuying
    Zhao, Kun
    Zhao, Yan
    Zeng, Debin
    Li, Qiongling
    Zheng, Yuanjie
    Yang, Ning
    Wang, Jian
    Li, Shuyu
    MEDICAL IMAGE ANALYSIS, 2023, 85
  • [23] Model library for deformable model-based segmentation of 3-D brain MR-images
    Koikkalainen, J
    Lötjönen, J
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION-MICCAI 2002, PT 1, 2002, 2488 : 540 - 547
  • [24] 3D Visualization of Brain Tumors using MR Images: A Survey
    El-Torky, Dina Mohammed Sherif
    Al-Berry, Maryam Nabil
    Salem, Mohammed Abdel-Megeed
    Roushdy, Mohamed Ismail
    CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (04) : 353 - 361
  • [25] Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks
    Liu, Zhongqiang
    Gu, Dongdong
    Zhang, Yu
    Cao, Xiaohuan
    Xue, Zhong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 41 - 50
  • [26] Automatic 3D segmentation of spinal cord MRI using propagated deformable models
    De Leener, B.
    Cohen-Adad, J.
    Kadoury, S.
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [27] 3D anatomical shape atlas construction using mesh quality preserved deformable models
    Zhang, Shaoting
    Zhan, Yiqiang
    Cui, Xinyi
    Gao, Mingchen
    Huang, Junzhou
    Metaxas, Dimitris
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) : 1061 - 1071
  • [28] 3D brain tumor segmentation using fuzzy classification and deformable models
    Khotanlou, H
    Atif, J
    Colliot, O
    Bloch, I
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 312 - 318
  • [29] Localization of 3D anatomical point landmarks in 3D tomographic images using deformable models
    Frantz, S
    Rohr, K
    Stiehl, HS
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 492 - 501
  • [30] Dynamic 3D shape from multi-viewpoint images using deformable mesh model
    Nobuhara, S
    Matsuyama, T
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 192 - 197