3D brain tumor segmentation using fuzzy classification and deformable models

被引:0
|
作者
Khotanlou, H
Atif, J
Colliot, O
Bloch, I
机构
[1] Ecole Natl Super Telecommun Bretagne, GET, Dept TSI, CNRS,UMR 5142, F-75634 Paris 13, France
[2] McGill Univ, MNI, McConnell Brain Imaging Ctr, Montreal, PQ H3A 2B4, Canada
来源
FUZZY LOGIC AND APPLICATIONS | 2006年 / 3849卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method that automatically detects and segments brain tumors in 3D MR images is presented. An initial detection is performed by a fuzzy possibilistic clustering technique and morphological operations, while a deformable model is used to achieve a precise segmentation. This method has been successfully applied on five 3D images with tumors of different sizes and different locations, showing that the combination of region-based and contour-based methods improves the segmentation of brain tumors.
引用
收藏
页码:312 / 318
页数:7
相关论文
共 50 条
  • [1] 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models
    Khotanlou, Hassan
    Colliot, Olivier
    Atif, Jamal
    Bloch, Isabelle
    FUZZY SETS AND SYSTEMS, 2009, 160 (10) : 1457 - 1473
  • [2] Automated 3D segmentation using deformable models and fuzzy affinity
    Jones, TN
    Metaxas, DN
    INFORMATION PROCESSING IN MEDICAL IMAGING, 1997, 1230 : 113 - 126
  • [3] 3D surface reconstruction using fuzzy deformable models
    Xia, LM
    Gu, SW
    Shen, XQ
    Fei, YP
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 886 - 889
  • [4] 3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models
    Zhang, Shaoting
    Huang, Junzhou
    Uzunbas, Mustafa
    Shen, Tian
    Delis, Foteini
    Huang, Xiaolei
    Volkow, Nora
    Thanos, Panayotis
    Metaxas, Dimitris N.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III, 2011, 6893 : 611 - +
  • [5] Segmentation and classification of brain tumors using fuzzy 3D highlighting and machine learning
    Khalil Mowlani
    Mehdi Jafari Shahbazzadeh
    Maliheh Hashemipour
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 9025 - 9041
  • [6] Segmentation and classification of brain tumors using fuzzy 3D highlighting and machine learning
    Mowlani, Khalil
    Jafari Shahbazzadeh, Mehdi
    Hashemipour, Maliheh
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (11) : 9025 - 9041
  • [7] Segmentation of magnetic resonance images using 3D deformable models
    Lötjönen, J
    Magnin, IE
    Reissman, PJ
    Nenonen, J
    Katila, T
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI'98, 1998, 1496 : 1213 - 1221
  • [8] 3D Heart Segmentation and Volumetry Using Deformable Shape Models
    Schwarz, T.
    Heimann, T.
    Wolf, I.
    Meinzer, H. P.
    COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 741 - 744
  • [9] 2D and 3D shape based segmentation using deformable models
    El-Baz, A
    Yuksel, SE
    Shi, HJ
    Farag, AA
    El-Ghar, MA
    Eldiasty, T
    Ghoneim, MA
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 821 - 829
  • [10] Deformable Templates Guided Discriminative Models for Robust 3D Brain MRI Segmentation
    Liu, Cheng-Yi
    Iglesias, Juan Eugenio
    Tu, Zhuowen
    NEUROINFORMATICS, 2013, 11 (04) : 447 - 468