Optimal quantum adversary lower bounds for ordered search

被引:0
|
作者
Childs, Andrew M. [1 ]
Lee, Troy [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08855 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of 1/pi ln n + circle minus(1). Here, we find the exact value of the best possible quantum adversary lower bound for a symmetrized version of ordered search (whose query complexity differs from that of the original problem by at most 1). Thus we show that the best lower bound for ordered search that can be proved by the adversary method is 1/pi ln n + O(1). Furthermore, we show that this remains true for the generalized adversary method allowing negative weights.
引用
收藏
页码:869 / +
页数:2
相关论文
共 50 条
  • [41] Lower bounds for quantum oblivious transfer
    Chailloux, A., 2013, Rinton Press Inc. (13): : 1 - 2
  • [42] Size lower bounds for quantum automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    THEORETICAL COMPUTER SCIENCE, 2014, 551 : 102 - 115
  • [43] Lower bounds for quantum communication complexity
    Klauck, Hartmut
    SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 20 - 46
  • [44] Lower Bounds on Quantum Annealing Times
    Garcia-Pintos, Luis Pedro
    Brady, Lucas T.
    Bringewatt, Jacob
    Liu, Yi-Kai
    PHYSICAL REVIEW LETTERS, 2023, 130 (14)
  • [45] Lower Bounds for Quantum Parameter Estimation
    Walter, Michael
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 8007 - 8023
  • [46] QUANTUM SEARCH OF PARTIALLY ORDERED SETS
    Montanaro, Ashley
    QUANTUM INFORMATION & COMPUTATION, 2009, 9 (7-8) : 628 - 647
  • [47] Quantum search of partially ordered sets
    Department of Computer Science, University of Bristol, Woodland Road, Bristol, BS8 1UB, United Kingdom
    Quantum Inf. Comput., 2009, 7-8 (0628-0647):
  • [48] Optimal bounds for quantum bit commitment
    Chailloux, Andre
    Kerenidis, Iordanis
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 354 - 362
  • [49] Upper and lower bounds on optimal success probability of quantum state discrimination with and without inconclusive results
    Nakahira, Kenji
    Usuda, Tsuyoshi Sasaki
    Kato, Kentaro
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [50] Optimal Lower Bounds for Anonymous Scheduling Mechanisms
    Ashlagi, Itai
    Dobzinski, Shahar
    Lavi, Ron
    MATHEMATICS OF OPERATIONS RESEARCH, 2012, 37 (02) : 244 - 258