Optimal quantum adversary lower bounds for ordered search

被引:0
|
作者
Childs, Andrew M. [1 ]
Lee, Troy [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08855 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of 1/pi ln n + circle minus(1). Here, we find the exact value of the best possible quantum adversary lower bound for a symmetrized version of ordered search (whose query complexity differs from that of the original problem by at most 1). Thus we show that the best lower bound for ordered search that can be proved by the adversary method is 1/pi ln n + O(1). Furthermore, we show that this remains true for the generalized adversary method allowing negative weights.
引用
收藏
页码:869 / +
页数:2
相关论文
共 50 条
  • [31] Lower bounds for quantum communication complexity
    Klauck, H
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 288 - 297
  • [32] LOWER BOUNDS FOR QUANTUM OBLIVIOUS TRANSFER
    Chailloux, Andre
    Kerenidis, Iordanis
    Sikora, Jamie
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (1-2) : 158 - 177
  • [33] LOWER BOUNDS ON QUANTUM QUERY COMPLEXITY
    Toran, Jacobo
    Hoyer, Peter
    Spalek, Robert
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2005, (87): : 78 - 103
  • [34] Lower bounds for Quantum Oblivious Transfer
    Chailloux, Andre
    Kerenidis, Iordanis
    Sikora, Jamie
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010), 2010, 8 : 157 - 168
  • [35] NEW LOWER BOUNDS FOR QUANTUM HAMILTONIANS
    SACHRAJDA, CT
    WELDON, HA
    BLANKENBECLER, R
    PHYSICAL REVIEW D, 1978, 17 (02): : 507 - 513
  • [36] Mixed lower bounds for quantum transport
    Tcheremchantsev, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) : 247 - 282
  • [37] Quantum query algorithms and lower bounds
    Ambainis, A
    Classical and New Paradigms of Computation and Their Complexity Hierarchies, 2004, 23 : 15 - 32
  • [38] Size Lower Bounds for Quantum Automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, 2013, 7956 : 19 - 30
  • [39] Quantum lower bounds by entropy numbers
    Heinrich, Stefan
    JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 793 - 801
  • [40] Universal lower bounds for quantum diffusion
    Barbaroux, JM
    Tcheremchantsev, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (02) : 327 - 354