Optimal quantum adversary lower bounds for ordered search

被引:0
|
作者
Childs, Andrew M. [1 ]
Lee, Troy [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08855 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of 1/pi ln n + circle minus(1). Here, we find the exact value of the best possible quantum adversary lower bound for a symmetrized version of ordered search (whose query complexity differs from that of the original problem by at most 1). Thus we show that the best lower bound for ordered search that can be proved by the adversary method is 1/pi ln n + O(1). Furthermore, we show that this remains true for the generalized adversary method allowing negative weights.
引用
收藏
页码:869 / +
页数:2
相关论文
共 50 条
  • [1] Adversary lower bounds for nonadaptive quantum algorithms
    Koiran, Pascal
    Landes, Juergen
    Portier, Natacha
    Yao, Penghui
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (05) : 347 - 355
  • [2] Adversary lower bounds for nonadaptive quantum algorithms
    Koiran, Pascal
    Landes, Juergen
    Portier, Natacha
    Yao, Penghui
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2008, 5110 : 226 - +
  • [3] The quantum adversary method and classical formula size lower bounds
    Laplante, Sophie
    Lee, Troy
    Szegedy, Mario
    COMPUTATIONAL COMPLEXITY, 2006, 15 (02) : 163 - 196
  • [4] The quantum adversary method and classical formula size lower bounds
    Laplante, S
    Lee, T
    Szegedy, M
    TWENTIETH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2005, : 76 - 90
  • [5] THE QUANTUM ADVERSARY METHOD AND CLASSICAL FORMULA SIZE LOWER BOUNDS
    Sophie Laplante
    Troy Lee
    Mario Szegedy
    computational complexity, 2006, 15 : 163 - 196
  • [6] Lower bounds for local search by quantum arguments
    Aaronson, S
    SIAM JOURNAL ON COMPUTING, 2006, 35 (04) : 804 - 824
  • [7] Lower bounds of a quantum search for an extreme point
    Ozhigov, Y
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2165 - 2172
  • [8] A lower bound for quantum search of an ordered list
    Buhrman, H
    de Wolf, R
    INFORMATION PROCESSING LETTERS, 1999, 70 (05) : 205 - 209
  • [9] ADVERSARY LOWER BOUNDS FOR THE COLLISION AND THE SET EQUALITY PROBLEMS
    Belovs, Aleksandrs
    Rosmanis, Ansis
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (3-4) : 198 - 222
  • [10] LOWER BOUNDS FOR RANDOMIZED CONSENSUS UNDER A WEAK ADVERSARY
    Attiya, Hagit
    Censor-Hillel, Keren
    SIAM JOURNAL ON COMPUTING, 2010, 39 (08) : 3885 - 3904