Geodesics and killing vector fields on the tangent sphere bundle

被引:3
|
作者
Konno, T [1 ]
Tanno, S
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
10.1017/S0027763000025186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any Killing vector field on the unit tangent sphere bundle with Sasaki metric of a space of constant curvature kappa not equal 1 is fiber preserving by studying some property of geodesics on the bundle. As a consequence, any Killing vector field on the unit tangent sphere bundle of a space of constant curvature kappa not equal 1 can be extended to a Killing vector field on the tangent bundle.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [31] LIFTING VECTOR FIELDS FROM MANIFOLDS TO THE r-JET PROLONGATION OF THE TANGENT BUNDLE
    Kurek, Jan
    Mikulski, Wlodzimierz M.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (01): : 161 - 168
  • [32] BUNDLE OVER THE TANGENT SPHERE-BUNDLE OF A PI-MANIFOLD
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1979, 30 (117): : 1 - 19
  • [33] VECTOR FIELDS TANGENT TO FOLIATIONS
    Martins, L. F.
    Tari, F.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 765 - 778
  • [34] Design of tangent vector fields
    Fisher, Matthew
    Schroeder, Peter
    Desbrun, Mathieu
    Hoppe, Hugues
    ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):
  • [35] Design of tangent vector fields
    Caltech
    不详
    ACM Trans Graphics, 2007, 3
  • [36] Contact metric geometry of the unit tangent sphere bundle
    Calvaruso, G
    COMPLEX, CONTACT AND SYMMETRIC MANIFOLDS: IN HONOR OF L. VANHECKE, 2005, 234 : 41 - 57
  • [37] Shadow Problem for the Tangent Bundle of Straight Lines on a Sphere
    Zelinskii, Yu. B.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 291 - 293
  • [38] Integrable Systems with Variable Dissipation on the Tangent Bundle of a Sphere
    Shamolin M.V.
    Journal of Mathematical Sciences, 2016, 219 (2) : 321 - 335
  • [39] Paracontact metric structures on the unit tangent sphere bundle
    Calvaruso, Giovanni
    Martin-Molina, Veronica
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) : 1359 - 1380
  • [40] The unit tangent sphere bundle of a complex space form
    Cho, JT
    Chun, SH
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (06) : 1035 - 1047