CLUSTERING TECHNIQUES AND DISCRETE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-DOCUMENT SUMMARIZATION

被引:31
|
作者
Aliguliyev, Ramiz M. [1 ]
机构
[1] Natl Acad Sci, Inst Informat Technol, Dept 13, AZ-1141 Baku, Azerbaijan
关键词
text mining; sentence clustering; generic multi-document summarization; sentence extractive technique; discrete Particle Swarm Optimization algorithm; TEXT; SENTENCES; LEXRANK;
D O I
10.1111/j.1467-8640.2010.00365.x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-document summarization is a process of automatic creation of a compressed version of a given collection of documents that provides useful information to users. In this article we propose a generic multi-document summarization method based on sentence clustering. We introduce five clustering methods, which optimize various aspects of intra-cluster similarity, inter-cluster dissimilarity and their combinations. To solve the clustering problem a modification of discrete particle swarm optimization algorithm has been proposed. The experimental results on open benchmark data sets from DUC2005 and DUC2007 show that our method significantly outperforms the baseline methods for multi-document summarization.
引用
收藏
页码:420 / 448
页数:29
相关论文
共 50 条
  • [41] Weighted consensus multi-document summarization
    Wang, Dingding
    Li, Tao
    INFORMATION PROCESSING & MANAGEMENT, 2012, 48 (03) : 513 - 523
  • [42] MULTI-DOCUMENT SUMMARIZATION SYSTEMS COMPARISON
    Li, Lei
    Heng, Wei
    Liu, Ping'an
    2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS) Vols 1-3, 2012, : 1409 - 1413
  • [43] Arabic Single-Document Text Summarization Using Particle Swarm Optimization Algorithm
    Al-Abdallah, Raed Z.
    Al-Taani, Ahmad T.
    ARABIC COMPUTATIONAL LINGUISTICS (ACLING 2017), 2017, 117 : 30 - 37
  • [44] Multi-Document Summarization for Turkish News
    Demirci, Ferhat
    Karabudak, Engin
    Ilgen, Bahar
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [45] Multi-document summarization via submodularity
    Li, Jingxuan
    Li, Lei
    Li, Tao
    APPLIED INTELLIGENCE, 2012, 37 (03) : 420 - 430
  • [46] Multi-document text summarization - A survey
    Tandel, Amol
    Modi, Brijesh
    Gupta, Priyasha
    Wagle, Shreya
    Khedkar, Sujata
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), 2016, : 336 - 339
  • [47] An Overview of Research on Multi-Document Summarization
    Bao R.
    Sun H.
    Data Analysis and Knowledge Discovery, 2024, 8 (02) : 17 - 32
  • [48] Multi-document summarization via submodularity
    Jingxuan Li
    Lei Li
    Tao Li
    Applied Intelligence, 2012, 37 : 420 - 430
  • [49] Multi-Document Summarization by Information Distance
    Long, Chong
    Huang, Minlie
    Zhu, Xiaoyan
    Li, Ming
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 866 - +
  • [50] Causal Maps for Multi-Document Summarization
    Strelnikoff, Sasha
    Jammalamadaka, Aruna
    Warmsley, Dana
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4437 - 4445