CLUSTERING TECHNIQUES AND DISCRETE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-DOCUMENT SUMMARIZATION

被引:31
|
作者
Aliguliyev, Ramiz M. [1 ]
机构
[1] Natl Acad Sci, Inst Informat Technol, Dept 13, AZ-1141 Baku, Azerbaijan
关键词
text mining; sentence clustering; generic multi-document summarization; sentence extractive technique; discrete Particle Swarm Optimization algorithm; TEXT; SENTENCES; LEXRANK;
D O I
10.1111/j.1467-8640.2010.00365.x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-document summarization is a process of automatic creation of a compressed version of a given collection of documents that provides useful information to users. In this article we propose a generic multi-document summarization method based on sentence clustering. We introduce five clustering methods, which optimize various aspects of intra-cluster similarity, inter-cluster dissimilarity and their combinations. To solve the clustering problem a modification of discrete particle swarm optimization algorithm has been proposed. The experimental results on open benchmark data sets from DUC2005 and DUC2007 show that our method significantly outperforms the baseline methods for multi-document summarization.
引用
收藏
页码:420 / 448
页数:29
相关论文
共 50 条
  • [31] Multi-document extractive text summarization based on firefly algorithm
    Tomer, Minakshi
    Kumar, Manoj
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 6057 - 6065
  • [32] Multi-document summarization using a clustering-based hybrid strategy
    Nie, Yu
    Ji, Donghong
    Yang, Lingpeng
    Niu, Zhengyu
    He, Tingting
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2006, 4182 : 608 - 614
  • [33] Study of the impact of automatic clustering of sentences on a multi-document summarization system
    Bossard, Aurélien
    De Neef, Emilie Guimier
    CORIA 2011: COnference en Recherche d'Information et Applications - Conference on Information Retrieval and Applications, 2011, : 183 - 190
  • [34] Abstractive Multi-Document Text Summarization Using a Genetic Algorithm
    Neri Mendoza, Veronica
    Ledeneva, Yulia
    Arnulfo Garcia-Hernandez, Rene
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 422 - 432
  • [35] OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization
    Davis, Sashka T.
    Conroy, John M.
    Schlesinger, Judith D.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 454 - 463
  • [36] Multi-document Summarization using Evolutionary Multi-objective Optimization
    Jung, Chihoon
    Datta, Rituparna
    Segev, Aviv
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 31 - 32
  • [37] MSBGA: A multi-document summarization system based on genetic algorithm
    He, Yan-Xiang
    Liu, De-Xi
    Ji, Dong-Hong
    Yang, Hua
    Teng, Chong
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2659 - +
  • [38] Automatic Multi-document Summarization Based on Clustering and Nonnegative Matrix Factorization
    Park, Sun
    Cha, ByungRea
    An, Dong Un
    IETE TECHNICAL REVIEW, 2010, 27 (02) : 167 - 178
  • [39] Enhanced continuous and discrete multi objective particle swarm optimization for text summarization
    Priya, V.
    Umamaheswari, K.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 229 - 240
  • [40] Enhanced continuous and discrete multi objective particle swarm optimization for text summarization
    V. Priya
    K. Umamaheswari
    Cluster Computing, 2019, 22 : 229 - 240