Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks

被引:0
|
作者
Embrechts, Mark J. [1 ]
Hargis, Blake J. [1 ]
Linton, Jonathan D. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; NONLINEAR PCA; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Interchangeability of learning rate and gain in backpropagation neural networks
    Thimm, Georg
    Moerland, Perry
    Fiesler, Emile
    Neural Computation, 1996, 8 (02):
  • [32] MODIFIED BACKPROPAGATION ALGORITHM FOR FAST LEARNING IN NEURAL NETWORKS
    REYNERI, LM
    FILIPPI, E
    ELECTRONICS LETTERS, 1990, 26 (19) : 1564 - 1566
  • [33] Stable dynamic backpropagation learning in recurrent neural networks
    Jin, LA
    Gupta, MM
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (06): : 1321 - 1334
  • [34] Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
    Hernandez-Lobato, Jose Miguel
    Adams, Ryan P.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1861 - 1869
  • [35] Autoassociative neural networks and noise filtering
    Dorronsoro, JR
    López, V
    Santa Cruz, C
    Sigüenza, JA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (05) : 1431 - 1438
  • [36] Autoassociative-heteroassociative neural networks
    Kropas-Hughes, CV
    Oxley, ME
    Rogers, SK
    Kabrisky, M
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2000, 13 (05) : 603 - 609
  • [37] Evolving Deep Neural Networks via Cooperative Coevolution With Backpropagation
    Gong, Maoguo
    Liu, Jia
    Qin, A. K.
    Zhao, Kun
    Tan, Kay Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 420 - 434
  • [38] Backpropagation-free training of deep physical neural networks
    Momeni, Ali
    Rahmani, Babak
    Mallejac, Matthieu
    del Hougne, Philipp
    Fleury, Romain
    SCIENCE, 2023, 382 (6676) : 1297 - 1303
  • [39] SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks
    Faraone, Julian
    Fraser, Nicholas
    Blott, Michaela
    Leong, Philip H. W.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4300 - 4309
  • [40] Efficient Bayesian Learning of Sparse Deep Artificial Neural Networks
    Fakhfakh, Mohamed
    Bouaziz, Bassem
    Chaari, Lotfi
    Gargouri, Faiez
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 78 - 88